Authors/Aristotle/priora/Liber 2/C20
From The Logic Museum
Jump to navigationJump to searchChapter 20
Greek | Latin | English |
---|---|---|
20 | ||
66b4 Ἐπεὶ δ᾽ ἔχομεν πότε καὶ πῶς ἐχόντων τῶν ὅρων γίνεται συλλογισμός, φανερὸν καὶ πότ᾽ ἔσται καὶ πότ᾽ οὐκ ἔσται ἔλεγχος. πάντων μὲν γὰρ συγχωρουμένων, ἢ ἐναλλὰξ τιθεμένων τῶν ἀποκρίσεων, οἷον τῆς μὲν ἀποφατικῆς τῆς δὲ καταφατικῆς, ἐγχωρεῖ γίνεσθαι ἔλεγχον. ἦν γὰρ συλλογισμὸς καὶ οὕτω καὶ ἐκείνως ἐχόντων τῶν ὅρων, ὥστ᾽ εἰ τὸ κείμενον ἐναντίον τῶι συμπεράσματι, ἀνάγκη γίνεσθαι ἔλεγχον· ὁ γὰρ ἔλεγχος ἀντιφάσεως συλλογισμός. | (0705D) Quoniam ergo habemus quando et quomodo se habentibus terminis fit syllogismus, manifestum et quando erit, et quando non erit elenchus, nam omnibus affirmativis, vel permutatim positis responsionibus (ut hac quidem affirmativa, illa vero negativa), contingit fieri elenchum: erit enim syllogismus, et sic in illo modo se habentibus terminis; quare si id quod positum est contrarium sit conclusioni, necesse est fieri elenchum, nam elenchus syllogismus contradictionis est. | Since we know when a syllogism can be formed and how its terms must be related, it is clear when refutation will be possible and when impossible. A refutation is possible whether everything is conceded, or the answers alternate (one, I mean, being affirmative, the other negative). For as has been shown a syllogism is possible whether the terms are related in affirmative propositions or one proposition is affirmative, the other negative: consequently, if what is laid down is contrary to the conclusion, a refutation must take place: for a refutation is a syllogism which establishes the contradictory. |
εἰ δὲ μηδὲν συγχωροῖτο, ἀδύνατον γενέσθαι ἔλεγχον· οὐ γὰρ ἦν συλλογισμὸς πάντων τῶν ὅρων στερητικῶν ὄντων, ὥστ᾽ οὐδ᾽ ἔλεγχος· εἰ μὲν γὰρ ἔλεγχος, ἀνάγκη συλλογισμὸν εἶναι, συλλογισμοῦ δ᾽ ὄντος οὐκ ἀνάγκη ἔλεγχον. ὡσαύτως δὲ καὶ εἰ μηδὲν τεθείη κατὰ τὴν ἀπόκρισιν ἐν ὅλωι· ὁ γὰρ αὐτὸς ἔσται διορισμὸς ἐλέγχου καὶ συλλογισμοῦ. | Si vero nihil affirmetur, impossibile est fieri elenchum, non enim erat syllogismus, cum omnes termini erant privativi, quare nec elenchus: nam si elenchus, necesse est syllogismus esse; cum autem est syllogismus, non necesse est elenchum esse. (0706A) Similiter autem si nihil positum sit secundum responsionem universaliter; nam eadem erit definitio syllogismi et elenchi. | But if nothing is conceded, a refutation is impossible: for no syllogism is possible (as we saw) when all the terms are negative: therefore no refutation is possible. For if a refutation were possible, a syllogism must be possible; although if a syllogism is possible it does not follow that a refutation is possible. Similarly refutation is not possible if nothing is conceded universally: since the fields of refutation and syllogism are defined in the same way. |