Authors/Aristotle/priora/Liber 2/C25
From The Logic Museum
Jump to navigationJump to searchChapter 25
Greek | Latin | English |
---|---|---|
(PL 64 0709C) CAPUT XXV. De apagoge deductioneque. | 25 | |
69a20 Ἀπαγωγὴ δ᾽ ἐστὶν ὅταν τῶι μὲν μέσωι τὸ πρῶτον δῆλον ἦι ὑπάρχον, τῶι δ᾽ ἐσχάτωι τὸ μέσον ἄδηλον μέν, ὁμοίως δὲ πιστὸν ἢ μᾶλλον τοῦ συμπεράσματος· ἔτι ἂν ὀλίγα ἦι τὰ μέσα τοῦ ἐσχάτου καὶ τοῦ μέσου· πάντως γὰρ ἐγγύτερον εἶναι συμβαίνει τῆς ἐπιστήμης. οἷον ἔστω τὸ Α τὸ διδακτόν, ἐφ᾽ οὗ Β ἐπιστήμη, τὸ Γ δικαιοσύνη. ἡ μὲν οὖν ἐπιστήμη ὅτι διδακτόν, φανερόν· ἡ δ᾽ ἀρετὴ εἰ ἐπιστήμη, ἄδηλον. | (0709D) Deductio autem quando medio quidem primum palam est inesse, postremo autem medium dubium quidem, similiter autem credibile aut magis conclusione. Amplius, si pauciora sunt media postremo et medio, omnino enim propinquius esse accidit scientiae. Ut sit A docibile, in quo B disciplina, C iustitia, ergo disciplina quoniam docibilis, manifestum; iustitia autem si disciplina, dubium. | By reduction we mean an argument in which the first term clearly belongs to the middle, but the relation of the middle to the last term is uncertain though equally or more probable than the conclusion; or again an argument in which the terms intermediate between the last term and the middle are few. For in any of these cases it turns out that we approach more nearly to knowledge. For example let A stand for what can be taught, B for knowledge, C for justice. Now it is clear that knowledge can be taught: but it is uncertain whether virtue is knowledge. |
εἰ οὖν ὁμοίως ἢ μᾶλλον πιστὸν τὸ Β Γ τοῦ Α Γ, ἀπαγωγή ἐστιν· ἐγγύτερον γὰρ τοῦ ἐπίστασθαι διὰ τὸ προσειληφέναι τὴν Α Β ἐπιστήμην, πρότερον οὐκ ἔχοντας. ἢ πάλιν εἰ ὀλίγα τὰ μέσα τῶν Β Γ· καὶ γὰρ οὕτως ἐγγύτερον τοῦ εἰδέναι. οἷον εἰ τὸ Δ εἴη τετραγωνίζεσθαι, τὸ δ᾽ ἐφ᾽ ὧι Ε εὐθύγραμμον, τὸ δ᾽ ἐφ᾽ ὧι Ζ κύκλος· εἰ τοῦ Ε Ζ ἓν μόνον εἴη μέσον, τὸ μετὰ μηνίσκων ἴσον γίνεσθαι εὐθυγράμμωι τὸν κύκλον, ἐγγὺς ἂν εἴη τοῦ εἰδέναι. ὅταν δὲ μήτε πιστότερον ἦι τὸ Β Γ τοῦ Α Γ μήτ᾽ ὀλίγα τὰ μέσα, οὐ λέγω ἀπαγωγήν. οὐδ᾽ ὅταν ἄμεσον ἦι τὸ Β Γ· ἐπιστήμη γὰρ τὸ τοιοῦτον. | Si igitur similiter aut magis credibile sit B C quam A C, deductio est, propinquius enim scientiae, per quod assumpserint A C, disciplinam prius non habentes. Aut rursum si pauciora media sint B C, nam et sic propinquius est scientiae. (0710A) Ut si D sit quadrangulare, in quo autem E rectilineum, in quo F circulus, si ergo eius quod est E F unum solum sit medium, per lunares figuras aequalem fieri rectilineo circulum propinquius erit scientiae. Quando autem neque credibilius est B C quam A C, neque pauca media, non dico deductionem, neque quando immediata est B C, disciplina enim quod eiusmodi est.
|
If now the statement BC is equally or more probable than AC, we have a reduction: for we are nearer to knowledge, since we have taken a new term, being so far without knowledge that A belongs to C. Or again suppose that the terms intermediate between B and C are few: for thus too we are nearer knowledge. For example let D stand for squaring, E for rectilinear figure, F for circle. If there were only one term intermediate between E and F (viz. that the circle is made equal to a rectilinear figure by the help of lunules), we should be near to knowledge. But when BC is not more probable than AC, and the intermediate terms are not few, I do not call this reduction: nor again when the statement BC is immediate: for such a statement is knowledge. |