Authors/Ockham/Summa Logicae/Book II/Chapter 13
Latin | English |
---|---|
[2.13 DE PROPOSITIONIBUS AFFIRMATIVIS IN QUIBUS PONUNTUR TERMINI PRIVATIVI QUI NON SUNT AEQUIVALENTES INFINITIS] | 13: On Affirmative Propositions in which there occur Privative Terms which are not Equivalent to Infinite Terms |
Quamvis propositiones in quibus ponuntur termini infiniti vel eis aequivalentes non habeant nisi duas exponentes, tamen propositiones affirmativae in quibus ponuntur termini privativi, qui non sunt aequivalentes terminis infinitis, plures habent exponentes quam duas. Unde ista 'iste est caecus' habet istas exponentes 'iste est aliquid', 'iste est natus videre', 'iste per naturam numquam poterit videre'. De talibus autem non potest dari certa regula, quia secundum varietatem terminorum talium, propositiones, in quibus ponuntur, diversimode debent exponi. Unde ista 'Sortes est caecus' habet exponentes illas quae dictae sunt. Ista autem propositio 'Sortes est fatuus' habet istas 'Sortes est aliquid' et 'Sortes non habet sapientiam quam deberet habere'; cum hoc tamen stat quod possit habere sapientiam. Unde ista stant simul 'Sortes est fatuus vel insipiens' et 'Sortes per naturam potest esse sapiens'. Sed ista non stant simul 'Sortes est caecus' et 'Sortes per naturam potest esse videns'. Et ita patet quod alias exponentes habet una propositio et alia, et tamen in utraque ponitur terminus privativus. | Although propositions in which there occur infinite terms, or their equivalents, have but two exponents, yet affirmative propositions in which there occur privative terms that are not equivalent to infinite terms have more than two exponents.
Hence the proposition 'he is blind' has the exponents 'he is something', 'by nature he should see', 'he will never be able to see by nature'. But for such propositions it is not possible to give fixed rules, because according to the variety of such terms, the propositions in which they occur have to be expounded in diverse ways. Hence, 'Socrates is blind' has as exponents those which have been said. But the proposition 'Socrates is foolish' has the exponents 'Socrates is something' and 'Socrates does not have the wisdom which he ought to have'. Yet this stands with him being able to have wisdom. Hence, the following propositions stand together: 'Socrates is foolish or stupid' and 'Socrates by nature is able to be wise '. But the following propositions do not stand together: 'Socrates is blind' and 'Socrates by nature can be sighted'. And so it is clear that the one proposition has different exponents from the other, and yet a privative term occurs in each. |
Qualiter autem diversimode tales propositiones debeant exponi, faciliter videri potest si accipiantur definitiones exprimentes quid nominis illorum terminorum privativorum et ex eis formando exponentes. | Now the various ways in which such propositions ought to be expounded can easily be seen if we take the nominal definitions of those privative terms and forming the exponents from them. |