Authors/Roger Swyneshed/Insolubilia
Swyneshed's text was written after roughly 1330 and certainly before 1335, the date of Heytesbury's Regulae. Weisheipl lists MSS. containing one or both of Swyneshed's tracts. Spade examined three: [1]
- Bruges, Bibl. publ. MS. 500, ff. 150va-157va (mid-14c).
- Vatican, Vat. lat. 2130, fl. 1[0]54vb-159va (15c).
- Vatican, Vat. lat. 2154, ff. 6va-12va (I5c).
In addition, Spade examined two other MSS. of Swyneshed's text, not cited by Weisheipl:
- Cambridge, Corpus Christi College 244 (245), ff. 59r-76v (15c).
- Cambridge, Corpus Christi CoIIege 378, ff. 77r-80r (incomplete) (15c).
English translation by Stephen Read (link), used with permission. Page numbers refer to Spade 1979.
Glossary of Technical Terms and Idiomatic Phrases
- antecedens: premise
- artificialiter: arbitrarily
- assumptum: (main) claim
- casus: scenario
- conclusio: thesis
- consequens: conclusion
- cum totaliter sic esse sicut est: with its being wholly as it is
- et ultra, igitur: accordingly
- notum: obvious
- suppositio: basic principle
Latin | English |
---|---|
<Rogerii Swyneshed Insolubilia > | |
(1) (V154vb, V*6va) Dicto de obligationibus restat de insolubilibus secundum processum prohemii determinare. | (1) That said about obligations, it remains to treat insolubles according to the method of the proemium. |
I | |
(2) (C59r, C*77r) Divisiones autem ad hoc pertinentes sunt quattuor. Prima est haec: Propositionum alia significat principaliter sicut est vel principaliter aliter quam est, alia nec principaliter sicut est nec aliter quam est. Propositio significans principaliter sicut est est sicut propositio significans principaliter quod deus est vel quod tu sedes, si ita sit, et sic de consimilibus. Propositio significans principaliter aliter quam est est sicut propositio significans quod homo est asinus vel quod tu sedeas, si tu non sedes. Propositio nec principaliter significans sicut est nec aliter quam est, id est, quae nec est vera nec falsa, est propositio significans aliqualiter esse et illa sic significando est pertinens ad inferendum se ipsam non significare principaliter sicut est, sicut [181] haec propositio Haec propositio non significat sicut est’, demonstrata illa eadem, quae principaliter significet quod ipsa non significat sicut est. Et haec similiter ‘Omnis propositio significat aliter quam est’ quae principaliter significet quod omnis propositio significat aliter quam est. Et sic de similibus. | (2) Now the divisions pertaining to this are four. The first is this: some propositions signify principally as it is or principally other than it is, others neither principally as it is nor other than it is. A proposition signifying principally as it is, is, for example, a proposition signifying principally that God exists or you are sitting, if you are, and suchlike. A proposition signifying principally other than it is, is, for example, a proposition signifying that a man is an ass or that you are sitting, if you are not sitting. A proposition neither signifying principally as it is nor other than it is,[2] is a proposition signifying in some way and that so signifying is relevant to inferring itself not to signify principally as it is, for example, the proposition ‘This proposition does not signify as it is’, referring to itself, which principally signifies that it itself does not signify as it is. And this similarly, ‘Every proposition signifies other than it is’, which principally signifies that every proposition signifies other than it is. And likewise for similar cases. |
(3) Pro quo est notandum quod propositio pertinens ad inferendum se ipsam non significare principaliter sicut est est talis ex qua cum totaliter sic esse sicut est sequitur vel natum est sequi illam non significare principaliter sicut est. Exemplum: Significet haec propositio ‘Haec significat aliter quam est’ principaliter quod haec significat aliter quam est, ipsamet demonstrata. Tunc sequitur “ Haec propositio significat aliter quam est; et principaliter sic significat; igitur, haec (C59v) non significat principaliter sicut est”. Et ita ex illa cum totaliter sic esse sicut est sequitur quod ipsa non significat sicut est. Et ideo nec significat aliter quam est nec sicut est. Et sicut est de illa, ita est de similibus. | (3) About this it should be known that a proposition relevant to inferring itself not to signify principally as it is, is one from which, with its being wholly as it is (cum totaliter sic esse sicut est),[3] it follows or is apt to follow that it does not signify principally as it is. An example: let the proposition ‘This signifies other than it is’ signify principally that this signifies other than it is, referring to itself. Then it follows: this proposition signifies other than it is, and it signifies principally like that, hence, it does not signify principally as it is. And thus from it, with its being wholly as it is, it follows that it itself does not signify as it is. And so it neither signifies other than it is nor as it is. And just as it is for that one, so too for similar ones. |
[182] | |
(4) Secunda divisio est haec: Propositionum alia falsificat se ipsam, alia non. Propositio falsificans se ipsam est duplex. Quaedam falsificat se mediate, quaedam immediate. Propositio falsificans se mediate est propositio significans principaliter sicut est vel aliter quam est et ipsa sic significando falsificat propositionem aliam a se falsificantem se. Exemplum: Sit a una propositio significans principaliter quod b est falsum, et b una propositio significans principaliter quod a est falsum. Et sit tantum unum a et tantum unum b. Tunc hoc posito, non potest poni quod utrumque sit verum, sed oportet ponere quod alterum sit falsum. Nec potest ratio assignari quare magis a est falsum quam b est falsum nec e converso. Igitur, illo casu posito, oportet ponere utrumque fore falsum. Et sic ex a sequitur b fore falsum, et ex b sequitur a fore falsum. Et ita ex a sequitur a fore falsum (V*6vb) mediante b. Et ex b sequitur b fore falsum mediante a. Et ita a falsificat b immediate et se ipsam mediate. | (4) The second division is this: some propositions falsify themselves, some not. A proposition falsifying itself is of two sorts. Some falsify themselves indirectly, some directly. A proposition falsifying itself indirectly is a proposition signifying principally as it is or other than it is and that so signifying falsifies another proposition falsifying it. An example: let A be a proposition signifying principally that B is false, and let B be a proposition signifying principally that A is false. And let there be only one A and only one B. Then on this assumption, it cannot be claimed that each is true, but it is necessary to claim that one is false. Nor can there be any better reason to say that A is false than that B is false, or vice versa. Therefore, in the scenario described, it is necessary to claim that each is false. And in this way from A it follows that B is false, and from B it follows that A is false. So from A it follows that A is false indirectly via B, and from B it follows that B is false indirectly via A. And thus A falsifies B directly and itself indirectly. |
(5) Propositio falsificans se immediate est propositio significans principaliter sicut est vel aliter quam est pertinens ad inferendum se ipsam fore falsam. Et illa est duplex. Quaedam est pertinens sufficiens, quaedam est pertinens insufficiens. Pertinens sufficiens est propositio significans principaliter sicut est vel aliter quam est ex qua sic significando immediate sequitur vel est natum sequi ipsam fore falsam. Exemplum: [183] Significet illa propositio ‘Hoc est falsum’ principaliter quod hoc est falsum, (V155ra) ipsamet demonstrata. Tunc sequitur immediate “Hoc est falsum; igitur, hoc est falsum”. Et sic illa est pertinens sufficiens ad inferendum se ipsam fore (C60r) falsam. | (5) A proposition falsifying itself directly is a proposition signifying principally as it is or other than it is, relevant to inferring itself to be false. And it is of two kinds. Some are relevant sufficiently, some are relevant insufficiently. Relevant sufficiently are propositions signifying principally as it is or other than it is from which, signifying in this way, it directly follows or is apt to follow that they are false. An example: let the proposition ‘This is false’ signify principally that this is false, referring to itself. Then it directly follows ‘This is false, therefore, this is false’. And in this way it is relevant sufficiently to inferring itself to be false. |
(6) Pertinens insufficiens est duplex. Quaedam est pertinens insufficiens ad inferendum solum se ipsam fore falsam, et quaedam est pertinens insufficiens ad inferendum se ipsam fore falsam et aliam similiter. Propositio pertinens insufficiens primo modo est propositio significans sicut est ex qua sic significando cum totaliter sic esse sicut est ex parte rei sequitur vel natum est sequi ipsam fore falsam et ex ita esse sine illa non sequitur illud”. Exemplum: Ponatur quod tantum sit unus Sortes et quod solum dicat illam (C*77v) ‘Sortes dicit falsum’ et quod illa ex impositione principaliter significet quod Sortes dicit falsum. Tunc sequitur ‘Sortes dicit falsum’; et solum dicit illam ‘Sortes dicit falsum’; igitur, illa est falsa. Et illa est pertinens ad inferendum cum casu posito quod illa ‘Sortes dicit falsum’ significat principaliter sicut est. | (6) Relevant insufficiently are of two kinds. Some are relevant insufficiently to inferring only themselves to be false, and some are relevant insufficiently to inferring themselves to be false and another similarly. A proposition relevant insufficiently in the first way is a proposition signifying as it is from which, signifying in that way, with its being wholly as it is, it follows in reality or is apt to follow that it itself is false and without this addition that does not follow. An example: suppose that there is only one Socrates and that he only says ‘Socrates says a falsehood’ and that it principally signifies by imposition that Socrates says a falsehood. Then it follows: Socrates says a falsehood, and he only says ‘Socrates says a falsehood’, therefore it is false. And it is relevant to inferring in that scenario that ‘Socrates says a falsehood’ signifies principally as it is. |
(7) Propositio pertinens insufficiens secundo modo est propositio pertinens ad inferendum se ipsam fore falsum et similiter aliam. Exemplum: Ponatur quod illa propositio ‘Omnis propositio est falsa’ praecise significet quod omnis propositio est falsa. Et sint multae falsae propositiones aliae ab illa. Tunc ex illa significante totaliter esse sicut [184] est sequitur vel est natum sequi illam eandem fore falsam et aliam similiter ab illa. Et ideo illa est pertinens insufficiens ad inferendum se et aliam ab illa fore falsam. Antecedens probatur sic: Omnis propositio est falsa; ipsamet est propositio; igitur, ipsamet est falsa. Et sic infert se ipsam fore falsam. Sequitur etiam “Omnis propositio est falsa; propositio alia ab illa est propositio; igitur, propositio alia ab illa est falsa”. Et sic sequitur propositionem aliam ab illa fore falsam. | (7) A proposition relevant insufficiently in the second way is a proposition relevant to inferring itself to be false and another similarly. An example: suppose that the proposition ‘Every proposition is false’ only signifies that every proposition is false. And suppose there are many other false propositions. Then from it, signifying wholly to be as it is it follows or is apt to follow that it itself is false and another similarly. And so it is relevant insufficiently to inferring itself and another to be false. The premise is proved like this: every proposition is false, it itself is a proposition, therefore, it itself is false. And in this way it implies itself to be false. It also follows: every proposition is false, a proposition other than it is a proposition, therefore, a proposition other than it is false. And in this way it follows that another proposition is false. |
(8) Propositio non falsificans se est propositio habens conditiones propositionum falsificantium se conditionibus contrarias, sicut sunt universaliter omnes propositiones in se falsae, sicut de tali ‘Homo est asinus’ principaliter significante quod homo est asinus. Et universaliter de omni propositione tali. | (8) A proposition not falsifying itself is a proposition having conditions contrary to the conditions of propositions falsifying themselves, such as are universally all propositions false in themselves, as is ‘A man is an ass’ signifying principally that a man is an ass, and universally of every such proposition. |
(9) Contra illas divisiones dicetur. Ideo hic (V*7ra) transeo. | (9) Some speak against these divisions, so I leave them for now.[4] |
(10) Tertia divisio est haec: Omne insolubile provenit ex proprietate vocis vel ex actu nostro vel ex mixtione actus nostri cum proprietate (C60v) vocis. Proprietates vocum sunt illae: esse verum, esse falsum, esse necessarium, esse impossibile, et sic similia. Actus nostri sunt duplices, scilicet, interiores et exteriores. Primi sunt sicut scire, intellegere, cogitare, credere, dubitare, et similia. Secundi sicut ambulare, scribere, et huiusmodi. | (10) The third division is this: every insoluble arises from a property of speech or from an act of ours or from a mixture of an act of ours with a property of speech. Properties of speech are these: to be true, to be false, to be necessary, to be impossible, and so on. Acts of ours are two-fold, namely, interior and exterior. The first kind are, e.g., ‘to know’, ‘to comprehend’, ‘to think’, ‘to believe’, ‘to doubt’ and so on. The second kind are ‘to walk’, ‘to write’ and suchlike. |
(11) Ultima divisio est haec: Propositionum alia significat complexe naturaliter, alia complexe actualiter. Primo modo sunt propositiones [185] in anima, si quae sint. Secundo modo est dupliciter: Quaedam significat actualiter ex impositione vel impositionibus, quaedam non actualiter ex impositione vel ex impositionibus. Propositio significans actualiter ex impositione est ut ‘Deus est’ imposita ad significandum principaliter quod deus est, et sic de aliis. Propositio significans' ex impositionibus est ut haec propositio ‘Deus est’, si imponebatur ab uno ad significandum quod deus est et ab alio imponebatur ad significandum quod hono est asinus. Tunc utroque modo sic significat. | (11) The last division is this: some propositions signify complexly naturally, others complexly arbitrarily (artificialiter).[5] Of the first kind are propositions in the mind, if there are any. Of the second kind are two-fold: some signify arbitrarily by imposition, some not arbitrarily by imposition. A proposition signifying arbitrarily by imposition is, e.g., ‘God exists’ imposed to signify principally that God exists, and so on. (A proposition signifying by imposition is, e.g., 'God exists’, if it was imposed by one person to signify that God exists and was imposed by another to signify that a man is an ass. Then in each way it signifies like that.) |
(12) Propositio significans actualiter non ex impositione ut sic: Talis propositio ‘Deus est’ imponatur ad significandum principaliter quod deus est et aliquis concipiat per illam aliter quam fuerit imposita ad significandum, sicut quod homo est asinus. Tunc illa actualiter et non ex impositione sic significat. | (12) A proposition signifying arbitrarily not by imposition is, e.g., such a proposition as ‘God exists’ imposed to signify principally that God exists when someone conceives by it other than what it was imposed to signify, e.g., that a man is an ass. Then it signifies arbitrarily in that way and not by imposition. |
(13) Post illa sequuntur quattuor definitiones seu descriptiones. Prima est haec: Propositio est oratio indicativa congrua naturaliter (V155rb), ex impositione, vel impositionibus qua vel quibus ultimo fuit imposita complexe ad significandum significativa. Haec patet discurrendo per singulas propositiones. | (13) After that there follow four definitions or descriptions. The first is this: a proposition is a congruent indicative utterance significative either naturally or by an imposition by which it was last imposed to signify complexly. |
(14) Secunda est haec: Propositio (C*78r) vera est propositio non falsificans se principaliter sicut est significans naturaliter aut ex impositione vel impositionibus qua vel quibus ultimo fuit imposita ad significandum. | (14) The second is this: a true proposition is a proposition not falsifying itself signifying principally as it is either naturally or by an imposition by which it was last imposed to signify. |
(15) Tertia definitio: Propositio falsa est oratio falsificans se vel oratio non falsificans se principaliter aliter quam est significans (C61r) naturaliter, ex impositione, vel impositionibus quo vel quibus ultimo fuit imposita ad significandum. | (15) Third definition: a false proposition is an utterance falsifying itself or an utterance not falsifying itself signifying principally other than it is either naturally or by an imposition by which it was last imposed to signify. |
[186] | |
(16) Quarta est haec: Insolubile ad propositum est propositio significans principaliter sicut est vel aliter quam est pertinens ad inferendum se ipsam fore falsam vel nescitam vel creditam, et sic de singulis. | (16) The fourth is this: an insoluble as put forward is a proposition signifying principally as it is or other than it is ⟨which is⟩ relevant to inferring itself to be false or unknown or not believed,[6] and so on. |
(17) Postea sequuntur octo suppositiones quarum prima est haec: Omnis propositio pertinens ad inferen(V*7rb)dum se ipsam fore falsam est falsificans se. Haec patet ex intentione Philosophi quarto Metaphysicae ubi ponit quasdam orationes se ipsas destruere. Et planum est quod ibi nihil aliud intellegitur per orationem destruentem se nisi orationem pertinentem ad inferendum se ipsam fore falsam, quod significatur per illum terminum ‘falsificans se’. Et melius sonat in lingua latina nominare talem propositionem falsificare se quam destruere eo quod nec oratio est destructiva sui ipsius nec alterius a se. Melius tamen sonat in lingua graeca nominare talem propositionem destruere quam falsificare se. Et ideo translator utitur hoc verbo ‘destruere se’ ubi nos utimur ‘falsificare se’ eo quod verius tali propositioni competit. | (17) Next there follow eight basic principles (suppositiones), of which the first is this: every proposition relevant to inferring itself to be false is one falsifying itself.[7] This is clear from the intention of the Philosopher in the fourth book of the Metaphysics[8] where he claims that these utterances destroy themselves. And it is plain there that the only utterances that he takes to destroy themselves are utterances relevant to inferring themselves to be false, which is signified by this phrase ‘falsifying itself’. And it sounds better in the Latin language to say that such a proposition falsifies itself than destroys itself in that no utterance is destructive neither of itself nor of anything other than itself. But it sounds better in the Greek language to say that such a proposition destroys itself than falsifies itself. And so the translator uses the verb ‘destroy itself’ where we use ‘falsify itself’ in that it applies more truly to such a proposition. |
(18) Secunda est haec: Omnis propositio falsificans se est propositio falsa. Haec probatur: Omnis propositio falsificans se significat sicut est vel aliter quam est. Si aliter quam est, igitur falsa per deflnitionem tertiam. Si significat sicut est, tunc ex illa cum totaliter sic esse sicut est sequitur quod illa est falsa”. | (18) The second ⟨basic principle⟩ is this: every proposition falsifying itself is a false proposition. This is proved: every proposition falsifying itself signifies as it is or other than it is. If other than it is, therefore it is false by the third definition. If it signifies as it is, then from it, with its being wholly as it is, it follows that it is false. |
[187] | |
(19) Tertia est haec: Propositio verificans se est propositio (C61v) pertinens ad inferendum se ipsam fore veram. Haec patet per probationem prioris suppositionis. Nam sicut propositio pertinens ad inferendum se fore falsam dicitur falsificans se, sic propositio pertinens ad inferendum se fore veram dicitur verificans se. | (19) The third is this: a proposition verifying itself is a proposition relevant to inferring itself to be true. This is clear by the proof of the previous basic principles. For just as a proposition relevant to inferring itself to be false is said to falsify itself, so a proposition relevant to inferring itself to be true is said to verify itself. |
(20) Quarta: Non omnis propositio verificans se est vera. Haec probatur sic: Ponatur quod sunt multae propositiones verae et multae falsae. Tunc illa propositio ‘Omnis propositio est vera’ principaliter significans quod omnis propositio est vera, ut notum, est falsa. Patet per definitionem tertiam eo quod principaliter significat aliter quam est. Et quod illa verificat se patet. Nam ipsa est pertinens ad inferendum se ipsam fore veram, quia sequitur “Omnis propositio est vera; ipsamet est propositio; igitur, ipsamet est vera”. | (20) Fourth: not every proposition verifying itself is true. This is proved like this: suppose that there are many true and many false propositions. Then the proposition ‘Every proposition is true’ signifying principally that every proposition is true is, as is obvious (notum), false. It is clear by the third definition in that it principally signifies other than it is. And that it verifies itself is clear. For it is relevant to inferring itself to be true, because it follows: every proposition is true, it itself is a proposition, therefore, it itself is true. |
(21) Quinta est haec: Nulla propositio est suae partes. Haec patet per Philosophum septimo Metaphysicae, circa finem, ubi declarat quod haec syllaba ‘ba’ non est haec illae litterae ‘b’ et ‘a’ et quod illae litterae possunt esse quando non est illa syllaba. Ideo illae Iitterae non sunt illa syllaba vel communiter dicendo nulla propositio est suae partes. | (21) The fifth is this: no proposition is its parts. This is clear according to the Philosopher in Metaphysics Z,[9] towards the end, where he points out that the syllable ‘ba’ is not the letters ‘b’ and ‘a’ and that these letters can exist when the syllable doesn’t. So the letters are not the syllable, or as is commonly said, no proposition is its parts. |
(22) Sexta: Nulla propositio vera est falsa et e converso. Haec patet de se. | (22) Sixth: no true proposition is false and vice versa. This is clear in itself. |
(23) (C*78v) Septima: Qualitercumque concipiens propositionem concipit per propositionem, illa sic sibi significat. Haec patet ex descriptione illius termini ‘significare’. Nam significare non est aliud quam conceptui aliquid (V155va) repraesentare; sed qualitercumque concipiens propositionem concipit per propositionem taliter propositio conceptui (C62r) repraesentat; igitur, et cetera. | (23) Seventh: however someone conceiving a proposition conceives by the proposition, it signifies itself in that way. This is clear from the description of the term ‘signify’. For to signify is none other than to represent something to be conceived; but however one conceiving a proposition conceives by the proposition, in that way the proposition represents to be conceived, therefore etc. |
(24) Octava et ultima: Propositio in voce vel in scripto solum propter taliter esse qualiter ex impositione (V*7va) vel impositionibus [188] significat est vera vel falsa. Haec patet. Nam si propositio in voce vel in scripto foret vera vel falsa propter hoc quod aliquis concipit per eam sic esse, vel taliter vel aliter, tunc purus latinus sciret plures propositiones graecas quam perfectissimus graecus. Quod probatur sic: Capitur purus latinus qui per omne scriptum quod videat et per omne prolatum quod audiat concipiat solum quod deus est. Capiatur alius perfectissimus graecus qui concipit taliter esse per propositiones qualiter ex impositione vel impositionibus significant. Et pono quod ille latinus audiat et videat omnes propositiones graecas quas videt et audit ille graecus. Tunc ille latinus scit omnes propositiones illas esse veras eo quod per omnes propositiones concipit sicut est. Sed iste graecus non, eo quod per aliquas concipit sicut est et per aliquas aliter quam est. | (24) Eighth and last: a spoken or written proposition is true or false only according to such a way as it signifies by imposition. This is clear. For if a spoken or written proposition were true or false according to the fact that someone conceives by it to be in such a way, either this way or that, then a monoglot Latin speaker would know more Greek propositions than the most perfect Greek speaker. This is proved like this: take a monoglot Latin speaker who by everything written that he sees and by every utterance that he hears conceives only that God exists. Take another most perfect Greek speaker who conceives so to be by propositions as they signify by imposition. Suppose that the Latin speaker hears and sees all the Greek propositions which the Greek speaker sees and hears. Then the Latin speaker knows all these propositions to be true in that he conceives by all the propositions as it is. But the Greek speaker does not, in that by some he conceives as it is and by others other than it is. |
(25) Ultimo ex istis sequuntur tres conclusiones quarum prima est haec: Aliqua propositio falsa significat principaliter sicut est. Haec probatur sic: Aliqua est propositio significans principaliter sicut est quae falsificat se; et omnis propositio falsificans se est falsa; igitur, aliqua propositio falsa significat principaliter sicut est. Maior patet per praedicta in secunda divisione huius particulae. Et minor patet per secundam suppositionem. Ex quibus sequitur conclusio probata. | (25) Lastly, from these ⟨basic principles⟩ there follow three theses (conclusiones) of which the first is this: some false proposition signifies principally as it is. This is proved like this: some proposition signifying principally as it is falsifies itself, and every proposition falsifying itself is false, therefore, some false proposition principally signifies as it is. The major ⟨premise⟩ is true by what was said in the second division of this section. And the minor is clear by the second basic principle, and from these the conclusion follows and is proved. |
[189] | |
(26) Secunda conclusio: In aliqua consequentia bona formali ex vero sequitur falsum. Haec probatur sic: In aliqua consequentia bona et formali ex vero sequitur propositio falsificans se; et quaelibet talis (C62v) est falsa, ut patet per secundam suppositionem; igitur, et cetera. Antecedens probatur: Haec consequentia est bona et formalis “Consequens illius consequentiae est falsum; igitur, consequens est falsum”. Et illius consequentiae antecedens est verum et consequens falsum. Quod probatur sic: Et ponatur quod tantum illa consequentia sit et nulla alia et quod antecedens illius principaliter significet quod consequens illius consequentiae sit falsum, ipsa eadem demonstrata per ly ‘illius’, et quod consequens principaliter significet quod consequens sit falsum. Hoc posito, illud consequens falsificat se, quod patet. Nam consequens est pertinens ad inferendum se ipsam fore falsam; igitur, falsificat se. Consequentia patet per primam suppositionem. Et antecendens probatur sic: Ex consequente cum totaliter sic esse sicut est sequitur illud consequens fore falsum; igitur, consequens est pertinens. Et consequentia patet per dicta in divisione secunda. Antecedens probatur. Nam sequitur “Consequens est falsum; et tantum illud consequens est; igitur, illud consequens est falsum”. Et quod antecedens sit verum probatur. Nam antecedens principaliter significat sicut est; et non falsificat se; igitur, antecedens est verum. Consequentia illa est bona. Et maior et minor patent intuenti. | (26) The second thesis: in some formal and valid inference the false follows from the true. This is proved like this: in some formal and valid inference a proposition falsifying itself follows from the true; and anything like that is false, as is clear by the second basic principle, therefore etc.The premise is proved: the following inference is formal and valid: the conclusion of this inference is false, therefore, the conclusion is false. The premise of that inference is true and the conclusion false, which is proved like this: suppose that there is only that inference and no other, and that its premise signifies principally that the conclusion of that inference is false, referring to ⟨the inference⟩ itself by ‘this’, and that the conclusion signifies principally that the conclusion is false. Supposing that, the conclusion falsifies itself, as is clear. For the conclusion is relevant to inferring itself to be false, therefore, it falsifies itself. The inference is clear by the first basic principle, and the premise is proved like this: from the conclusion with its being wholly as it is it follows that the conclusion is false, therefore, the conclusion is relevant; and the inference is clear by what was said in the second division. The premise is proved, for it follows: the conclusion is false, and there is only that conclusion, therefore, that conclusion is false. That the premise is true is proved, for the premise principally signifies as it is, and it does not falsify itself, therefore, the premise is true. The inference is valid, and the major and minor ⟨premises⟩ are clear on inspection. |
(27) Ultima conclusio, quod duo contradictoria sibi mutuo contradicentia sunt simul falsa. Haec probatur sic: Aliqua sunt contradictoria [190] quorum unum principaliter signiflcat aliter quam est et (C*7vb) aliud falsificat se; igitur, aliqua duo contradictoria sibi invicem contradicentia sunt simul falsa. Consequentia patet per suppositionem secundam et definitionam tertiam. (C*79r) Assumptum probatur sic: Et capio illa duo contradictoria ‘Hoc est falsum’ et ‘Hoc non est falsum’, et volo quod per utrumque pronomen demonstretur illa ‘Hoc est falsum’ , videlicet, primam, et quod illa ‘Hoc est falsum' principaliter significet quod hoc est falsum, et quod illa ‘Hoc non est falsum’ principaliter significet quod hoc non est falsum. Tunc primum illorum est falsum quia (C63r) falsificat se. Nam sequitur “Hoc est falsum; igitur, hoc est falsum “. Et secundum illorum est falsum eo quod signiflcat aliter quam est, quia significat quod prima propositio non est* falsum; et hoc est falsum; igitur, secunda est falsa. | (27) The last thesis ⟨is⟩ that two contradictories mutually contradicting one another are both false. This is proved like this: there are some contradictories of which one principally signifies other than it is and the other falsifies itself, therefore, two contradictories mutually contradicting one another are both false. The inference is clear by the second basic principle and the third definition. The claim is proved like this: take the two contradictories, ‘This is false’ and ‘This is not false’, where ‘This is false’ is referred to by each pronoun, and that ‘This is false’ principally signifies that this is false, and that ‘This is not false’ principally signifies that it is not false. Then the first of them is false because it falsifies itself. For it follows: this is false, therefore, this is false. And the second of them is false in that it signifies other than it is, because it signifies that the first proposition is not false, and that is false, therefore, the second is false. |
(28) (V155vb) Contra illas propositionea arguitur multipliciter. Primo sic: Una illarum propositionum ponit aliquam propositionem fore nec veram nec falsam, quod est contra Aristotelem in Praedicamentis ubi dicit in uno loco sic: “Videtur autem omnis affirmatio vera vel falsa “. Ex qua sequitur quod omnis affirmativa est vera vel falsa. Et si hoc est verum de istis affirmativis, eadem ratione erit verum de negativis. | (28) One argues against these proposals in many ways. First, like this: one of those proposals claims that some proposition is neither true nor false,[10] which is contrary to Aristotle in the Categories where he says in one place: “Now it seems that every affirmation is true or false”,[11] from which it follows that every affirmative is true or false. And if this is true of these affirmatives, for the same reason it will be true of negatives. |
(29) Item, in eodem libro alibi dicit sic: “In eo quod res est vel non est oratio dicitur vera vel falsa”. Sed quaecumque propositio detur, ita est ex parte rei sicut illa significat vel non est ita. Igitur, quaecumque propositio detur, ista erit vera vel falsa. | (29) Again, elsewhere in the same book he says: “An utterance is said to be true or false in that things are or are not”.[12] But whatever proposition is given, thus it is in reality as it signifies or not so. Therefore, whatever proposition is given, it will be true or false. |
(30) Solutio: Ubi Aristoteles ponit illam auctoritatem, “Videtur autem “, et cetera, intendit ponere differentiam inter propositiones et incomplexa* ex quibus componuntur propositiones. Differentia igitur sua est quod omne verum vel falsum est propositio affirmativa vel negativa. Et sequitur quod nullum incomplexum est verum vel falsum*. Et sic salvatur prima auctoritas. | (30) Solution: where Aristotle claims authoritatively, “Now it seems” etc., he means to draw a distinction between propositions and the incomplex ⟨terms⟩ from which propositions are composed. Therefore, his point is that every truth or falsehood is an affirmative or negative proposition. And it follows that no incomplex ⟨term⟩ is true or false. Thus the first ⟨appeal to⟩ authority is accommodated. |
[191] | |
(31) Pro secunda est dicendum quod illa est intentio Aristotelis, quod in eo quod ita est ex parte rei sicut propositio principaliter significat et non falsificat se est propositio vera, et in eo quod aliter est ex parte rei quam propositio significat est falsa. | (31) For the second, it should be said that it is Aristotle’s meaning that it is ⟨in virtue of⟩ its being in reality as the proposition principally signifies and does not falsify itself that a proposition is true, and it is in ⟨virtue of⟩ its being in reality other than a proposition signifies that it is false. |
(32) Pro quo est sciendum quod omnis propositio significans principaliter sicut est vel aliter quam est sive sit de praesenti sive de praeterito sive de futuro, sive de necessario sive de contingenti, cuius veritas dependet a praesenti est vera vel falsa et nulla alia. Ex quo patet quod multae sunt propositiones quae nec sunt verae nec falsae cuiusmodi sunt illae ‘Haec significat aliter quam est', eadem demonstrata sic principaliter significante, (C63v) ‘Tu eris mortuus cras’, et universaliter omnes propositiones de futuro contingenti quarum veritas non dependet a praesenti. | (32) Accordingly, it should be understood that every proposition signifying principally as it is or other than it is, whether it is of the present or the past or the future ⟨tense⟩ , whether of necessity or of contingency, whose truth depends on the present, is either true or false and no others. From this it is clear that there are many propositions which are neither true nor false, such as ‘This signifies other than it is’, referring to itself and principally signifying in that way, 'You will be dead tomorrow’, and universally all propositions of future contingency whose truth does not depend on the present. |
(33) Contra aliam partem positionis arguitur sic: Illa ponit aliquam propositionem fore falsam quae principaliter significat sicut est; igitur, eadem ratione habet ponere quod aliqua est vera quae principaliter significat aliter quam est; et hoc negat illa positio; igitur, (V*8ra) male. | (33) One argues against another part of this opinion like this: it claims that some proposition is false which principally signifies as it is,[13] therefore, for the same reason it has to claim that some ⟨proposition⟩ is true which principally signifies other than it is, and this opinion denies this, therefore, it is wrong. |
(34) Ad idem, illa positio affirmat omnem propositionem falsificantem se fore falsam; igitur, a simili ratione habet ponere omnem propositionem verificantem se fore veram, quod negat illa positio. | (34) Again, this opinion affirms that every proposition falsifying itself is false, therefore, for a similar reason it has to claim that every proposition verifying itself is true, which that opinion denies. |
(35) Ad primum dicendum quod consequentia non valet. Sed antecedens est verum. Et pro tanto: Si ex aliquibus propositionibus quarum quaelibet significat principaliter sicut est sequitur aliqua propositio, ipsa significat sicut est, sed si ex aliquibus propositionibus quarum una significat aliter quam est et omnes aliae sicut est sequatur aliqua propositio, non sequitur quod illa significat sicut est. Cum igitur propo[192]sitio ponens quod propositio falsificans se significat sicut est sequatur ex aliquibus propositionibus quarum quaelibet signiflcat principaliter sicut est, sequitur igitur quod ita erit quod propositio sequens ex illis significat sicut est. Sed sic non potest deduci de propositione verificante se. Nam si capiatur propositio verificans se. et sit a*. Et arguitur sic: Illa significat sicut est; igitur, vera. Dato quod concederetur, tunc arguitur ex alia parte (C*79v): Illa significat aliter quam est; igitur, illa est vera. Illa consequentia est mere impossibilis. Nam tunc non sequitur quod illa sit vera, licet sequatur quod illa sequitur ex una significante aliter quam est et aliis praecise significantibus sicut est, quia aliqua illorum significat aliter quam est. Ex quo patet quod haec consequentia est bona: “Illa propositio (V156ra) falsificat se; igitur, ipsa est falsa”. Sed non valet illa consequentia: “Propositio verificat se; igitur, ipsa est vera.” Et sic solvitur tam prima obiectio quam secunda. | (35) To the first ⟨argument⟩ it should be said that the inference is not valid. But the premise is true. In as much as, if from some propositions each of which signifies principally as it is, some proposition follows, it signifies as it is; but if from some propositions one of which signifies other than it is and all others as it is, some proposition follows, it does not follow that it signifies as it is. Therefore, since a proposition claiming that a proposition falsifying itself signifies as it is follows from some propositions each of which signifies principally as it is, it therefore follows that so it will be that a proposition following from them signifies as it is. But it cannot be argued in this way from a proposition verifying itself. For if we take a proposition verifying itself, call it A, and we argue like this: it signifies as it is, therefore, ⟨it is⟩ true, given that it were conceded, then we argue from the other part: it signifies other than it is, therefore,it is true. The inference is simply impossible. For then it does not follow that it is true, although it does follow that it follows from one ⟨proposition⟩ signifying other than it is and others only signifying as it is, because some of them signify other than it is. From this it is clear that this inference is valid: this proposition falsifies itself, therefore, it is false. But this inference is not valid: the proposition verifies itself, therefore, it is true. And in this way we solve both the firsthand the second objection. |
[193] | |
(36) Item, contra duas ultimas conclusiones sic obicitur. Et primo contra primam per Aristotelem in primo Priorum ubi utitur talibus regulis “Consequens est falsum; igitur, et antecedens”, et “ Antecedens est verum; igitur, et consequens”. Et per consequens non potest poni aliqua consequentia bona et' formalis cuius antecedens verum sit et consequens falsum, cuius oppositum ponit secunda conclusio. | (36) Again, there is an objection to the last two theses, and first, against the first in line with Aristotle in the first book of the Prior Analytics where he deploys such rules as ‘The conclusion is false, so the premise is too’, and ‘The premise is true, so the conclusion is too'. And in consequence one cannot claim that some inference is good and formal whose premise is true and conclusion false, the opposite of which the second thesis claims. |
(37) Pro illo est dicendum quod intentio Aristotelis per primam regulam est illa: Si consequens non significet sicut est et nec antecedens nec consequens sit pertinens ad inferendum se ipsum non significare sicut est, igitur antecedens non significat sicut est. Secunda regula sic intellegitur: Si antecedens significat sicut est et nec antecedens nec consequens est pertinens ad inferendum se ipsum non significare sicut est, igitur consequens significat sicut est. | (37) Here it must be said that what Aristotle means by the first rule is this: if the conclusion does not signify as it is and neither the premise nor the conclusion is relevant to inferring itself not to signify as it is, then the premise does not signify as it is. The second rule may be understood like this: if the premise signifies as it is and neither the premise nor the conclusion is relevant to inferring itself not to signify as it is, then the conclusion signifies as it is. |
(38) Contra ultimam conclusionem sic arguitur per Aristotelem in primo Periermeneias et in primo Posteriorum et in multis aliis locis. Videtur quod Aristoteles innuat quod duo contradictoria non possunt simul esse falsa; et illa hoc ponit; igitur, ipsa est falsa. | (38) Against the ⟨third and⟩ final thesis one argues like this in line with Aristotle in the first book of De Interpretatione and in the first book of the Posterior Analytics and in many other places. It seems that Aristotle indicates that two contradictories cannot be true or false together, and ⟨the third thesis⟩ claims this, and so it is false. |
(39) Solutio: Conclusio est vera, sicut declaratum est. Sed intellectus Aristotelis ibidem est ille quod nulla sunt duo contradictoria sibi invicem contradicentia quorum utrumque significet sicut est (V*8rb) vel quorum utrumque principaliter significet aliter quam est. Et illo modo loquitur [194] Aristoteles continue dicendo id fore verum quod significat sicut est et illud fore falsum quod significat aliter quam est — nisi in materia insolubilium ubi intellegit per ‘falsum’ non tale quod significat aliter quam est sed tale quod est destruens se, id est, falsificans, sicut per eum patet quarto Metaphysicae, ubi dicit textus sic “Accidit autem omnibus talibus destruere se ipsas”, sicut est de tali oratione ‘Omnia sunt falsa’, ubi intellegit Aristoteles quod talis oratio quae est pertinens ad inferendum se ipsam fore falsam destruat se, hoc est, falsificat, et quaelibet talis est falsa, ut declaratum est. | (39) Solution: the thesis is true, as it was stated. But Aristotle’s meaning there is that there are no two contradictories mutually contradicting one another each of which signifies as it is or each of which principally signifies other than it is. And in that way Aristotle speaks always by saying that what signifies as it is, is true, and that what signifies other than it is, is false, except in the case of insolubles where he understands by ‘false’ not what signifies other than it is but what undermines itself, that is, falsifying itself, as, e.g., is clear in the fourth book of the Metaphysics, where the text says: “But it happens in all such cases that they undermine themselves”,[14] as, for example, with the sentence ‘Everything is false’, where Aristotle understands that such a sentence that is relevant to inferring itself to be false undermines itself, that it, falsifies itself, and all such are false, as was stated. |
II | |
(40) His igitur intellectis iuxta sententiam Aristotelis, consequens est insolubilium solutionem intellegere. Et primo de insolubilibus ex vocis proprietate generatis inter insolubilia simplicia a facilioribus principium mihi summam. Sit igitur haec propositio ‘Falsum est' in scripto et nulla alia praeter illam. Et significet (C64r) illa principaliter quod falsum est. Deinde proponatur ‘Falsum est'. Si negatur vel dubitatur, contra: Propositio vera vel falsa est; sed nulla propositio vera est; igitur, propositio falsa est. Et ultra: Igitur, falsum est. Maior est manifesta. Et minor sequitur ex casu, quod probatur sic: Oppositum minoris repugnat casui; igitur, minor sequitur ex casu. Assumptum probatur: Nam si oppositum minoris non repugnat casui et illa est possibilis ponatur illud oppositum minoris cum casu. Tunc sequitur quod propositio vera sit. Et arguitur sic: Propositio vera est; et nulla propositio est nisi illa ‘Falsum est’; igitur, illa est vera. Et ultra: Igitur, ita est sicut ipsa principaliter significat. Consequentia patet per definitionem secundam. Sed per casum illa principaliter significat quod falsum est; igitur, ita est quod falsum est; et nulla propositio est alia ab illa; igitur, illa est falsa. Et sic sequitur illud esse verum et falsum, quod est impossibile. Si conceditur ‘Falsum est’, tunc arguitur sic: Falsum est; (V156rb) et omnis propositio est illa ‘Falsum est’, eadem demonstrata; igitur, illa est falsa. Et ultra: Igitur, illa principaliter aliter significat quam est; et illa principaliter [195] significat quod falsum est; igitur, non est ita quod falsum est, cuius oppositum concedebatur. | (40) These things being understood according to Aristotle’s meaning, the result is an understanding of the solution of insolubles. And first I will begin with insolubles that arise from a property of speech, ⟨which are⟩ the easier ones among simple insolubles. So let this proposition ‘A falsehood exists’ be written and no other besides it. And let it signify principally that a falsehood exists. Then propose ‘A falsehood exists’. If it is denied or doubted, on the contrary: the proposition is true or false, but no proposition is true, so the proposition is false. Accordingly (et ultra, igitur), a falsehood exists. The major is evident, and the minor follows from the scenario, and is proved like this: the opposite of the minor is inconsistent with the scenario, therefore, the minor follows from the scenario. The premise is proved: for if the opposite of the minor is not inconsistent with the scenario and it is possible, let the opposite of the minor be added to the scenario. Then it follows that some proposition is true. And it is argued like this: some proposition is true, and there is no proposition except this, ‘A falsehood exists’; therefore, it is true. Accordingly, it is as it principally signifies. The inference is clear by the second definition. But according to the scenario it principally signifies that a falsehood exists, therefore, it is the case that a falsehood exists, and there is no proposition other than it, therefore it is false. And in this way it follows that it is true and false, which is impossible. If ‘A falsehood exists’ is granted, then it is argued like this: a falsehood exists, and the only proposition is ‘A falsehood exists, referring to that one, therefore, it is false. Accordingly, it principally signifies other than it is, and it principally signifies that a falsehood exists, therefore, it is not the case that a falsehood exists, the opposite of which was granted. |
(41) Ad idem, tu concessisti falsum scitum a te fore falsum non sequens ex casu pro tempore pro quo fuit falsum; igitur, male respondisti. | (41) In addition, you granted a falsehood known by you to be false, not following from the scenario for the time for which it was false, therefore, you responded badly. |
(42) Ad idem, falsum est; et illa principaliter significat quod falsum est; igitur, ita est sicut illa principaliter significat. Et ultra: igitur, illa est vera. | (42) In addition, a falsehood exists, and it principally signifies that a falsehood exists, therefore, it is as it principally signifies. Accordingly, it is true. |
(43) Pro illo sophismate et pro similibus negatur casus tamquam impossibilis. | (43) For that sophism and for similar ones, the scenario is denied as impossible. |
(44) (C*80r) Contra: Si illa propositio ‘Falsum est’ foret in scripto et multae propositiones forent cum illa, adhuc foret possibile quod aliquis videret illam (C64v). Ponatur igitur quod multae aliae propositiones (V*8va) sint cum illa ' Falsum est et quod ipsa principaliter significat ex impositione quod falsum est. Et sit Sortes unus homo qui' per totam vitam suam fuerit instructus ad concipiendum per quamcumque propositionem quam videat quod falsum est. Hoc posito, pono quod Sortes videat hanc propositionem ‘Falsum est’ in scripto et concipiet per illam quod falsum est sicut fuerat instructus. Tunc pono quod Sortes videat continue illam propositionem. Et corrumpatur quaelibet alia ab illa ita quod nulla sit praeter illam. Quo posito, Sortes concipit per illam quod falsum est; igitur, illa sibi significat quod falsum est. Consequentia patet per septimam suppositionem. Et nulli alteri a Sorte significat aliter; igitur, solum significat quod falsum est; et sic imponebatur ultimo ad significandum; ergo, illa principaliter significat quod falsum est; et tantum illa est; igitur, totus casus est possibilis. | (44) On the contrary: if the proposition ‘A falsehood exists’ were written and there were many propositions with it, still it would be possible that someone would see it. Suppose, therefore, that there are many other propositions along with ‘A falsehood exists’ and that it principally signifies by imposition that a falsehood exists. And let Socrates be one man who for his whole life was taught to comprehend by each proposition that he saw that a falsehood exists. Supposing this, I suppose that Socrates sees this written proposition, ‘A falsehood exists’ and comprehends by it that a falsehood exists just as he was taught. Then suppose that Socrates continues to see that proposition, and each other proposition is destroyed so that there is none besides it. Supposing this, Socrates comprehends by it that a falsehood exists, therefore, it signifies to him that a falsehood exists. The inference is clear by the seventh basic principle, and to no one else besides Socrates does it signify otherwise, therefore, it signifies only that a falsehood exists; and it is in this way that it was last imposed to signify, therefore, it principally signifies that a falsehood exists, and only that, so the whole scenario is possible. |
(45) Ad idem, adhuc posito quod tantum illa propositio sit, ista potest principaliter significare minus ex impositione et maius similiter; ergo, ex impositione sic principaliter potest significare. | (45) In addition, supposing that there is still only that proposition, it can principally signify less by imposition and similarly more, hence, it can principally signify by imposition in that way. |
[196] | |
(46) Ad idem, talis propositio ‘Deus est' potest significare principaliter quod deus est cum hoc quod tantum illa sit. Et talis propositio ‘Homo est asinus' potest principaliter significare quod homo est asinus cum hoc quod tantum illa sit. Et nulla potest causa assignari quare una potest significare principaliter cum hoc quod tantum illa sit quin eadem causa vel consimili possit illa ‘Falsum est' principaliter significare quod falsum est cum hoc quod tantum illa est. Cum igitur, talis casus sit possibilis, quod illa ‘Deus est' principaliter significet quod deus est cum hoc quod tantum illa sit, sequitur quod ille casus est possibilis, quod ista propositio ‘Falsum est' (C65r) principaliter significet quod falsum est cum hoc quod tantum illa sit. | (46) In addition, the proposition ‘God exists’ can signify principally that God exists even if it is the only ⟨proposition⟩ . And the proposition ‘A man is an ass’ can principally signify that a man is an ass even if it is the only ⟨proposition⟩ . And no reason can be given why the one can signify principally even if it is the only ⟨proposition⟩ that is not the same or similar reason why ‘A falsehood exists’ can signify principally that a falsehood exists even if it is the only ⟨proposition⟩ . Since, therefore, the scenario is possible that ‘God exists’ principally signifies that God exists even if it is the only ⟨proposition⟩, it follows that the scenario is possible that ‘A falsehood exists’ signifies principally that a falsehood exists even if it is the only ⟨proposition⟩ . |
(47) Sed hic fingitur una causa. Dicitur enim, licet talis propositio ‘Deus est' foret et nulla alia et illa principaliter significet quod deus est, ex hoc tamen non sequitur aliquod impossibile. Sed si tantum illa propositio ‘Falsum est' foret et principaliter significaret quod falsum est, sequitur aliquod impossibile. Sed, ut posterius apparebit, illa causa nulla est nisi fatuorum protervientium qui ad insolubile aliter nesciunt respondere nisi possibile fore impossibile sustinere. | (47) But here a reason can be imagined. For, it is said, although the proposition ‘God exists’ can exist with no other and it principally signify that God exists, nonetheless from this there does not follow something impossible. But if there was only the proposition ‘A falsehood exists’ and it signified that a falsehood exists, something impossible would follow. But as will be seen later, that reason is none other than that of those wilfully stupid people who do not know how to respond to an insoluble other than to claim the possible to be impossible. |
(48) Admittendus est igitur casus. Et quando proponitur ‘Falsum est', concedenda est. Et concedendum est quod illa est falsa. Et negatur consequentia “Igitur, illa principaliter significat aliter quam est”. Sed oportet addere antecedenti quod illa non falsificat se. Et hoc est falsum. Nam sequitur “Falsum est; et omnis propositio est illa ‘Falsum est'; igitur, illa est falsa”. Et sic illa est pertinens ad inferendum se [197] ipsam fore falsum. Et ultra: Igitur, illa est falsa. Consequentia patet per secundam suppositionem. | (48) The scenario is therefore admitted, and when ‘A falsehood exists’ is proposed, it is granted. And it is granted that it is false. And the inference ‘Therefore, it principally signifies other than it is’ is denied. But it is necessary to add to the premise that it does not falsify itself. And that is false, for it follows: a falsehood exists, and ‘A falsehood exists’ is every proposition, therefore, it is false. And in this way it is relevant to inferring itself to be a falsehood. Accordingly, it is false. The inference is clear by the second basic principle. |
(49) Ad secundam formam negatur consequentia et antecedens similiter. Consequentia enim ibi facta non valet eo quod bene respondendo (V*8vb) in casu aliquo posito esset concedendum falsum scitum a me esse falsum et impossibile scitum a me fore impossibile, ut si poneretur quod haec propositio ‘Deus est' et quaelibet talis significet praecise quod homo est asinus, et hoc bene scias. Adhuc illa foret concedenda ‘Deus est', tamen illa est falsa et impossibilis. Et antecedens similiter est negandum. Nam quod falsum est (V156va) sequitur ex casu. Nam cum casu non stat quod illa sit vera; et ex casu sequitur quod illa sit propositio de praesenti (C65v) significans sicut est vel aliter quam est; igitur, ex casu sequitur quod illa sit falsa. | (49) To the second ⟨objection⟩:[15] the inference is denied and the premise similarly. For the inference made there is not valid in that one can respond well in some posited scenario by granting a falsehood known by me to be false and an impossibility known by me to be impossible, e.g., if it were claimed that the proposition ‘God exists’ and every such ⟨proposition⟩ signified only that a man is an ass, and this you know well, still ‘God exists’ should be granted, even though it is false and impossible. And the premise should similarly be denied, for that a falsehood exists follows from the scenario. For it is not consistent with the scenario that it is true; and from the scenario it follows that it is a proposition in the present tense signifying as it is or other than it is, therefore, from the scenario it follows that it is false. |
(50) Ad ultimam formam concedenda est prima consequentia, scilicet, “Falsum est; et illa principaliter significat quod falsum est; igitur, ita est sicut principaliter significat”. Et negatur consequentia alia, scilicet, “igitur, illa est vera”, eo quod aliqua propositio falsificans se significat principaliter sicut est. Consequentia patet per conclusionem primam, ut est de propositione falsificante se, ut declaratum est prius. | (50) To the final ⟨objection⟩:[16] the first inference is granted, namely, a falsehood exists, and it principally signifies that a falsehood exists, therefore, it is as it principally signifies. And the other inference is denied, namely, “accordingly, it is true”, in that some proposition falsifying itself signifies principally as it is. The inference is clear by the first thesis, about a proposition falsifying itself, as was stated earlier. |
(51) Contra illam responsionem arguitur per Aristotelem secundo Elenchorum, capitulo de fallacia secundum quid et simpliciter. Et [198] ibi solvuntur insolubilia per illam formam; sed illa solutio non facit; igitur, peccat contra solutionem Aristotelis; igitur, non valet. | (51) It is argued against this response by ⟨what⟩ Aristotle ⟨says⟩ in the second Elenchi, in the chapter on the fallacy of restricted and unrestricted.[17] There insolubilia are solved by that fallacy. But that solution will not work, therefore, it sins against the solution of Aristotle, therefore, it is not valid. |
(52) Pro illo est admittendum quod talis consequentia “Haec propositio significat principaliter sicut est; igitur, haec propositio est vera” est fallacia secundum quid et simpliciter eo quod antecedens formaliter falsificat se. Nam ad hoc quod aliqua propositio sit vera requiritur quod significet sicut est et non falsificat se cum hoc; sed antecedens solum ponit consequens secundum unam partem sui significati et secundum aliam non; ideo arguere a tali antecedente ad tale consequens est fallacia secundum quid et simpliciter, ut si arguitur sic “Ille est albus secundum dentes; igitur, ille est albus”. | (52) Here it should be admitted that the inference, this proposition signifies principally as it is, therefore, this proposition is true, is a fallacy of the restricted and unrestricted in that the premise formally falsifies itself. For in order for some proposition to be true it is required that it signifies as it is and does not falsify itself either; but the premise only supports the conclusion according to one part of its significate and not according to the other; so to argue from the premise to the conclusion is a fallacy of the restricted and unrestricted, as when it is argued like this: he is white as regards his teeth, therefore, he is white. |
(53) Et quod illa sit intentio Aristotelis manifeste patet per eum idem ubi solvit talem passum fundatum super tali casu cum ponit quod aliquis solum iuret se fore peieratum. Tunc textus est talis: “Nam qui iurat se esse peieratum bene iurat peierans hoc solum quod tunc bene iurat.” Ex quo textu patet quod illa propositio qua talis iurat est falsa. (C66r) Nam si illa propositio foret vera, et aolum iuraret illam, tunc solum iuraret veram. Et per consequens, non foret periurus. Illis igitur Aristoteles concedit quod ille est periurus in hoc quod dicit in textu “bene iurat” eo quod iuret propositionem significantem sicut est. Sed per hoc quod in fine textus apponit illam negativam “non [199] iurat” intellegitur quod non iurat propositionem veram ita quod ibi est fallacia secundum quid et simpliciter “Ille iurat propositionem significantem sicut est principaliter; igitur, ille iurat veram”. Illud patet per textum paulo post sequentem qui dicit “Prohibet autem eundem non simpliciter esse mendacem quoad idem”, ubi intendit solvere passum fun (V*9ra) datum super tali casu: Ponatur quod Sortes sic dicat ‘Sortes est mendax’. Ex quo textu sequitur quod non est inconveniens eundem simul esse mendacem et dicere propositionem significantem principaliter sicut est. Ex quo patet quod non sequitur “Dico propositionem significantem sicut est; ergo, dico verum”. Sed est fallacia secundum quid et simpliciter ut prius est declaratum. | (53) That this is Aristotle’s meaning is manifestly clear in the place where he solves the paralogism based on the scenario when he supposes that someone judges only that he has perjured himself. Then the text is this: “For one who judges himself to have perjured himself judges well that he is perjured but did not judge well”.[18] From this text it is clear that the proposition by which he judges is false. For if the proposition was true, and he judged only that, then he would judge only a truth. And consequently, he would not be perjured. Therefore, Aristotle grants that he is perjured when he says “He judges well”, in that he judged a proposition signifying as it is. But by the fact that at the end of the text he adds the negative “he does not judge well”,[19] it is understood that he does not judge a true proposition so that there is there fallacy of the restricted and unrestricted: “He judges a proposition signifying as it is principally, therefore, he judges a truth”. That is clear from the text following a little later which says:“⟨Nothing⟩ prevents him from being a liar restrictedly at the same time,”[20] where he means to solve the paralogism based on the scenario supposing that Socrates says ‘Socrates is a liar’. From this text it follows that it is not impossible for the same person to be a liar and to say a proposition signifying as it is. From this it is clear that it does not follow: I say a proposition signifying as it is, therefore, I speak the truth. But it is a fallacy of the restricted and unrestricted as was averred earlier. |
(54) Aliud sophisma: Ponatur quod illa propositio sit et nulla alia sit ‘Nullum verum est' quae principaliter significat quod nullum verum est. Deinde proponatur quod nullum verum est. Si negatur vel dubitatur, contra: Nulla propositio quae non est illa est vera; nec illa est vera; igitur, nullum verum est. Maior patet per casum et minor est sequens ex casu. Quod probatur sic: Oppositum minoris est repugnans casui; ergo, minor sequitur ex casu. Assumptum sic probatur: Nam si non repugnat casui, cum illa sit possibilis, ponatur quod ita sit sicut illa significat cum casu. Et arguitur sic: Haec est vera ‘Nullum verum est’; (C66v) igitur, ita est sicut illa principaliter significat. Consequentia patet per definitionem secundam. Et illa principaliter signiflcat quod nullum verum est; ergo, ita est quod nullum verum est. (V156vb) Ex quo sequitur quod illa non est vera. Si conceditur quod nullum verum est, tunc sic: Nullum verum est; et illa sic principaliter significat; ergo, ita est quod nullum verum est. Ex quo sequitur quod sicut illa ita principaliter significat, est verum. Et ultra: igitur, illa est vera. Et ultra: igitur, aliquid est verum. Quod est oppositum praeconcessi. | (54) Another sophism: suppose that there is this proposition and no other: ‘No truth exists’, and that it principally signifies that no truth exists. Then propose that no truth exists. If it is denied or doubted: on the contrary, no proposition which is not that one is true, nor is that one true, therefore, no truth exists. The major is clear by the scenario and the minor follows from the scenario, which is proved like this: the opposite of the minor is inconsistent with the scenario, therefore, the minor follows from the scenario. The claim is proved like this: for if it is not inconsistent with the scenario, and since it is possible, suppose that it is as it signifies together with the scenario. I argue like this: ‘No truth exists’ is true, therefore, it is as it principally signifies. The inference is clear by the second definition. And it principally signifies that no truth exists, therefore, it is the case that no truth exists. From this it follows that it is not true. If it is granted that no truth exists, then ⟨I argue⟩ like this: no truth exists, and it principally signifies in that way, therefore, it is the case that no truth exists. From this it follows that as it is as it principally signifies, it is true. Accordingly, it is true. Moreover, something is true, which is the opposite of what was granted. |
(55) Solutio: Concedendum est quod nullum verum est. Et concedendum est quod ita est sicut illa principaliter significat. Et neganda est [200] consequentia “igitur, illa est vera” quia illa falsificat se quia est pertinens ad inferendum se ipsam fore falsam. Nam sequitur “Nullum verum est; et illa propositio principaliter significat sicut est vel aliter quam est; igitur, illa est falsa.” | (55) Solution: it should be granted that no truth exists. And it should be granted that it is as it principally signifies. And the inference, ‘”accordingly, it is true”, should be denied, because it falsifies itself since it is relevant to inferring that it itself is false. For it follows: no truth exists, and the proposition principally signifies as it is or other than it is, therefore, it is false. |
(56) Aliud sophisma: Ponatur quod tantum sint duae propositiones, sicut a et b. Et sit a una propositio vera. Et sit b illa ‘Omne verum est a’. Deinde proponitur illa ‘Omne verum est a’. Si negatur vel dubitatur, contra: a est verum; et nulla alia propositio ab a est vera; igitur, omne verum est a. Maior patet per casum. Et minor est sequens. Quod probatur sic: Oppositum minoris est propositio possibilis; et si illa ponatur cum casu accidit oppositum casus; ergo, minor sequitur ex casu. Et assumptum sic probatur. Et ponatur oppositum minoris cum casu et arguitur: Aliqua est propositio vera alia ab a; et nulla est alia propositio ab a nisi b; igitur, b est verum; et b principaliter signiflcat quod omne verum est a; igitur, ita est; et nullum b est a, nec a est 6; igitur, b non est verum (C67r), quod est oppositum unius particulae casus. Si concedatur ‘Omne verum est a’, contra: Si omne verum sit a, et b non est a, et b est, igitur, b non est verum. Consequentia illa (V*9rb) patet. Et maior est concessa. Et minor est possibilis. Igitur, conclusio est concedenda. Et tunc sic: b non est verum; et b est propositio de praesenti principaliter significans sicut est vel aliter quam est; igitur, b est falsum. Et ultra: igitur, non est ita sicut b significat. Et b significat quod omne verum est a; ergo, non est ita quod omne verum est a, cuius oppositum supra ponebatur. | (56) Another sophism: suppose that there are only two propositions, e.g., A and B, and let A be a true proposition, and let B be ‘Every truth is A’. Then ‘Every truth is A’ is proposed. If it is denied or doubted, on the contrary: A is true, and no other proposition besides A is true, therefore, every truth is A. The major is clear by the scenario, and the minor follows ⟨from it⟩. This is proved like this: the opposite of the minor is a possible proposition, and if it is supposed with the scenario it happens to be the opposite of the scenario, therefore, the minor follows from the scenario. The claim is proved like this: suppose the opposite of the minor with the scenario and argue: some proposition is true other than A, and there is no proposition other than A besides B, therefore, B is true; and B principally signifies that every truth is A, therefore, so it is, and B is not A, nor is A B, therefore, B is not true, which is the opposite of one part of the scenario. If ‘Every truth is A’ is granted, on the contrary: if every truth is A, and B is not A, and B exists, then B is not true. The inference is clear, and the major is granted, and the minor is possible. Therefore, the conclusion should be granted. And then like this: B is not true, and B is a proposition in the present tense principally signifying as it is or other than it is, therefore, B is false. Accordingly, it is not as B signifies, and B signifies that every truth is A, therefore, it is not the case that every truth is A, the opposite of which was supposed above. |
(57) Solutio: Concedenda est hoc ‘Omne verum est a’. Et concedo quod b est falsum. Et neganda est consequentia “igitur, b significat aliter quam est”. Sed oportet addere antecedenti quod b non falsificat se. Et b se falsificat, ut satis patet. | (57) Solution: ‘Every truth is A’ should be granted. And I grant that B is false. And the inference “accordingly, B signifies other than it is”[21] should be denied. But it is necessary to add to the premise that B does not falsify itself. And B does falsity itself, as is clear enough. |
[201] | |
(58) Simile est si ponatur quod tantum illae tres propositiones sint ‘Deus est’ quae sit vera, ‘Homo’ est' quae sit vera, et ‘Quaelibet propositio universalis est dissimilis istis’ quae principaliter significet quod quaelibet propositio universalis est dissimilis istis. Et pono quod per ly ‘istis' solum demonstrentur primae duae. Deinde proponatur ‘Quaelibet propositio universalis est dissimilis istis’. Si negatur vel dubitatur, contra: Illa est dissimilis istis; et illa est quaelibet propositio universalis; igitur, et cetera. Minor patet de se. Maiorem probo. Nam illa est falsa, demonstrata illa universali; igitur, illa est dissimilis istis, demonstratis illis veris. Consequentia patet ex modo loquendi. Assumptum probatur sic: Illa falsificat se; ergo, (C67r) illa est falsa.Consequentia patet per secundam suppositionem. Et antecedens probatur. Nam sequitur: “Illa est dissimilis istis; et illae sunt verae; igitur, illa est falsa”. Si conceditur, tunc sic: Quaelibet propositio universalis est dissimilis istis; et illa principaliter sic significat; igitur, illa significat principaliter sicut est. Et ultra: igitur, illa est vera; et illae sunt verae; ergo, illa est similis istis. Et ultra: igitur, illa non est dissimilis istis, cuius contrarium concedebatur. | (58) Similarly, if it is supposed that there are only these three propositions, ‘God exists’, which is true, ‘A man exists’, which is true, and ‘Every universal proposition is unlike them in truth value’, which principally signifies that every universal proposition is unlike them in truth-value. Suppose that ‘them’ just refers to the first two. Then ‘Every universal proposition is unlike them in truth-value’ is proposed. If it is denied or doubted, on the contrary: it is unlike them in truth-value, and it is the only universal proposition, therefore, every universal proposition is unlike them in truth-value. The minor is self-evident, and I prove the major: for this is false, referring to the universal, therefore, it is unlike them in truth-value. The inference is clear from the primary meaning
(ex modo loquendi).[22] The claim is proved like this: it falsifies itself, therefore, it is false. The inference is clear by the second basic principle, and the premise is proved, for it follows: it is unlike them in truth-value, and they are true, therefore, it is false. If it is granted, then like this: every universal proposition is unlike them in truth-value, and it principally signifies in that way, therefore, it signifies principally as it is. Accordingly, it is true; and they are true, therefore, they are similar in truth-value. Accordingly, it is not unlike them in truth-value, the contrary of which was granted. |
(59) Solutio: Concedenda est illa ‘Quaelibet propositio universalis (V157ra) est dissimilis istis’. Et concedendum est quod illa sic principaliter significat. Et neganda est consequentia “ergo, illa est vera” ex eo quod illa significat se esse falsam, ut patet intuenti. | (59) Solution: ‘Every universal proposition is unlike them in truth-value’ should be granted, and it should be granted that it principally signifies in that way, and the inference should be denied: 'accordingly, it is true’, in that it signifies itself to be false, as is clear on inspection. |
(60) De copulativis sit hoc exemplum: Ponatur quod illa copulativa ‘Deus est et illa copulativa est falsa’ sit omnis copulativa, quae principaliter significat quod deus est et quod copulativa illa est falsa, et quod prima pars significet quod deus est et secunda quod illa copulativa est falsa. Et ponatur quod per quodlibet tale demonstrativum ‘illa’ demons[202]tretur tota illa copulativa. Deinde proponitur illa. Si conceditur, tunc sic: Deus est et illa copulativa est falsa. Et ultra: igitur, illa copulativa significat aliter quam est, sicut prius. Et ultra: igitur, illa est neganda ‘Deus est et illa copulativa est falsa’. Si negatur vel dubitatur, contra: Illa copulativa falsificat se; ergo, illa copulativa est falsa. Antecedens patet. Nam sequitur: “Deus est et illa (V*9va) copulativa est falsa; igitur, illa copulativa est falsa”. | (60) Among conjunctive ⟨insolubles⟩ there is this example: suppose that the conjunction ‘God exists and this conjunction is false’ is every conjunction, principally signifying that God exists and that that conjunction is false, and that the first part signifies that God exists and the second that that conjunction is false. And suppose that each such demonstrative ‘this’ refers to that conjunction. Then it is proposed. If it is granted, then like this: God exists and this conjunction is false. Accordingly, that conjunction signifies other than it is, as before. Accordingly, ‘God exists and this conjunction is false’ should be denied. If it is denied or doubted, on the contrary: that conjunction falsifies itself, therefore, that conjunction is false. The premise is clear, for it follows: God exists and this conjunction is false, therefore, that conjunction is false. |
(61) Solutio: Concedenda est illa copulativa. Et concedendum est (C68) quod illa est falsa. Et neganda est consequentia “ergo, significat aliter quam est” eo quod significat sic sicut prius. | (61) Solution: the conjunction should be granted, and it should be granted that it is false. And the inference, ‘accordingly, it signifies other than it is’ should be denied, in that it falsifies itself,[23] as before. |
(62) De disiunctivis sit hoc exemplum: Ponatur quod haec disiunctiva ‘Homo est asinus vel nulla disiunctiva est vera’ sic principaliter significet et quod prima pars principaliter significet quod homo sit asinus et secunda quod nulla disiunctiva sit vera. Et non sit disiunctiva alia ab hac. Tunc dicendum est quod iila disiunctiva est falsa eo quod falsificat se. Si tamen ponatur illa, concedendum est eo quod significat sicut est. Tunc neganda est consequentia “igitur, illa est vera”, ut prius. | (62) Among disjunctive ⟨insolubles⟩ there is this example: suppose that this disjunctive proposition⟩ ‘A man is an ass or no disjunction is true’ principally signifies like that and that the first part principally signifies that a man is an ass and the second that no disjunction is true. And let there be no other disjunction. Then it must be said that the disjunction is false in that it falsifies itself. But if it is proposed, it should be granted in that it signifies as it is. Then the inference, ‘therefore, it is true’, should be denied, as before. |
(63) De exclusivis sit hoc exemplum: Sit a illa propositio ‘Deus est' quae sit vera. Sit b illa exclusiva ‘Tantum a est verum’. Et non sit propositio alia ab altera illarum. Et significet b principaliter quod tantum a est verum. Hoc posito, b est concedendum, scilicet, illa propositio ‘Tantum a est verum’, eo quod ita est sicut illa principaliter significat. Et tamen et dicendum est quod illa est falsa eo quod falsificat se, sicut patet consideranti. | (63) Among exclusives there is this example: let A be the proposition ‘God exists’, which is true. Let B be the exclusive ‘Only A is true’. And let there be no other proposition besides these. And let B principally signify that only A is true. Supposing this, B should be granted, namely, the proposition ‘Only A is true’, in that it is as it principally signifies. But it should also be said that it is false in that it falsifies itself, as is clear if you think about it. |
(64) Ultimo de exceptivis sit hoc exemplum: Sit a illa propositio ‘Nulla propositio praeter a est falsa '. Et non sit aliqua alia propositio ab a. Et sit tantum unum a. Et significat illa principaliter quod nulla propositio praeter a est falsa. Hoc posito, concedendum est a, scilicet, quod nulla propositio praeter a est falsa. Et dicendum est quod a est falsum eo quod a falsificat se, ut prius. | (64) Lastly, among exceptives there is this example: let A be the proposition ‘No proposition except A is false’. And let there be no other proposition other than A. And let there be only one A, and it signifies principally that no proposition except A is false. Supposing this, A should be granted, namely, that no proposition except A is false. And it should be said that A is false in that it falsifies itself, as before. |
[203] III | |
(65) Post haec autem consequens est solvere insolubilia ex actibus nostris nascentia. Pro quo est sciendum quod actus (C69) nostri ad propositum sunt duplices: quidam ex quibus sine proprietate vocis nata (V157rb) sunt insolubilia provenire, et alii sunt ex quibus sine proprietate vocis numquam sunt insolubilia nata provenire. Actus primi sunt sicut iurare, peierare, et similia. Actus secundi sicut videre, audire, dicere, et similia. De quibus in particula proxima dicetur. | (65) Now after this it is fit to solve insolubles arising from acts of ours. For this, it should be recalled that acts of ours as proposed are twofold: some from which insolubles are naturally produced without a property of speech, and others from which insolubles are never naturally produced without a property of speech. Acts of the first are such as to judge, to perjure and similars. Acts of the second are to see, to hear, to say, and similars, which are discussed in the next section. |
(66) Sit ergo hoc sophisma ‘Sortes decipitur’. Ponatur quod tantum sit unus Sortes qui credit illam ‘Sortes decipitur’ et decipiatur solum talis qui credit falsum. Deinde proponatur ‘Sortes decipitur’. Si negatur vel dubitatur, contra: Oppositum eius repugnat casui; ergo, ipsa sequitur ex casu. Antecedens probatur. Nam si illa ponatur cum casu, ex illa sequitur suum contradictorium; igitur, illa repugnat (V*9vb) casui. Assumptum probatur: Ponatur illa cum casu ‘Sortes non decipitur'. Et arguitur sic: Sortes non decipitur; et omnis talis decipitur qui credit falsum; ergo, Sortes non credit falsum. Et tunc sic: Sortes non credit falsum; et Sortes credit propositionem significantem sicut est vel aliter quam est; igitur, Sortes credit verum; et solum credit illam ‘Sortes decipitur’; ergo, illa est vera ‘Sortes decipitur'. Et illa principaliter significat quod Sortes decipitur; igitur, Sortes decipitur, quod est oppositum istius propositionis positae cum casu. | (66) So take this sophism: ‘Socrates is deceived’. Suppose that there is only one Socrates, who believes this ‘Socrates is deceived’, and he only is deceived who believes a falsehood. Then 'Socrates is deceived’ is proposed. If it is denied or doubted, on the contrary: its opposite is inconsistent with the scenario, therefore, it follows from the scenario. I prove the premise: for if it is proposed with the scenario, its contradictory follows from it, therefore, it is inconsistent with the scenario. The claim is proved: suppose that ‘Socrates is not deceived’ is posited with the scenario. It is argued like this: Socrates is not deceived, and everyone is deceived who believes a falsehood, therefore, Socrates does not believe a falsehood. And then like this: Socrates does not believe a falsehood, and Socrates believes a proposition signifying as it is or other than it is, therefore, Socrates believes a truth, and he only believes ‘Socrates is deceived’, therefore, 'Socrates is deceived’ is true. And that principally signifies that Socrates is deceived, therefore, Socrates is deceived, which is the opposite of the proposition posited with the scenario. |
(67) Si conceditur illa ‘Sortes decipitur’, tunc sic: Sortes decipitur; et omnis talis credit falsum; igitur, Sortes credit falsum. Et solum credit illam ‘Sortes decipitur'; (C70r) igitur, illa est falsa ‘Sortes decipitur'. Et ultra: igitur, illa significat aliter quam est; et illa solum significat quod Sortes decipitur; ergo, non est ita quod Sortes decipitur, cuius oppositum conceditur. | (67) If ‘Socrates is deceived’ is granted, then like this: Socrates is deceived, and every such ⟨person⟩ believes a falsehood, therefore, Socrates believes a falsehood. And he only believes ‘Socrates is deceived’, therefore, ‘Socrates is deceived’ is false. Accordingly, it signifies other than it is, and it only signifies that Socrates is deceived, therefore, it is not the case that Socrates is deceived, whose opposite was granted. |
(68) Solutio: Concedenda est hoc quod Sortes decipitur. Et concedendum est quod illa est falsa. Et neganda est consequentia illa “ergo, significat aliter quam est”. Sed oportet addere antecedenti quod illa non falsificet se, quod non facit in proposito. Sequitur enim “Sortes [204] decipitur; ergo, credit falsum; et solum credit illam ‘Sortes decipitur’; ergo, illa est falsa”. | (68) Solution: it should be granted that Socrates is deceived, and it should be granted that it is false, and the inference, ‘accordingly, it signifies other than it is’ should be denied. But it is necessary to add in the premise that it does not falsify itself, which is not so in the given case. For it follows: Socrates is deceived, therefore, he believes a falsehood, and he only believes 'Socrates is deceived’, therefore, it is false. |
(69) Simile est si ponatur quod Sortes credat illam propositionem ‘Plato decipitur’ et Plato illam ‘Sortes non decipitur’, et non credant alias ab istis, et quod illae propositiones sic principaliter significent. Et sit tantum unus Sortes et unus Plato. Isto posito, concedendum est quod Sortes non decipitur et quod Plato decipitur et quod illa est vera ‘Plato decipitur’ et quod illa est falsa ‘Sortes non decipitur’ eo quod falsificat se. Nam sequitur “Sortes non decipitur; ergo, non credit falsum; et credit propositionem significantem sicut est vel aliter quam est; ergo, credit verum; et solum credit illam ‘Plato decipitur'; igitur, illa est vera”. Et ultra: igitur, ita est sicut illa principaliter significat. Et per casum solum illa significat quod Plato decipitur; igitur, ita est quod Plato decipitur. Et ultra: igitur, Plato credit falsum; et solum credit illam ‘Sortes non decipitur’; igitur, illa est falsa ‘Sortes non decipitur’. Et ita ista falsificat se. Sed illa dicta a Sorte significat principaliter sicut est et non falsificat se; ergo, est vera. | (69) It is similar if one supposes that Socrates believes the proposition ‘Plato is deceived’ and Plato ⟨believes⟩ ‘Socrates is not deceived’, and they do not believe anything other than these, and that these propositions signify principally in this way. And suppose there is only one Socrates and one Plato. Supposing this, it should be granted that Socrates is not deceived and that Plato is deceived and that ‘Plato is deceived’ is true and that ‘Socrates is not deceived’ is false in that it falsifies itself. For it follows: Socrates is not deceived, therefore, he does not believe a falsehood, and he believes a proposition signifying as it is or other than it is, therefore, he believes a truth, and he only believes ‘Plato is deceived’, therefore, it is true. Accordingly, it is as it principally signifies. And by the scenario it only signifies that Plato is deceived, therefore, it is the case that Plato is deceived. Accordingly, Plato believes a falsehood, and he only believes ‘Socrates is not deceived’, therefore, ‘Socrates is not deceived’ is false. And thus it falsifies itself. But what was said by Socrates signifies principally as it is and does not falsify itself, therefore, it is true. |
(70) Simile sophisma est hoc: Ponatur quod Sortes dicat illam ‘Sortes mentitur' et solam illam et nullam aliam et quod illa principaliter significat quod Sortes mentitur, et sit tantum unus Sortes, et quod omnis mentiens dicat (C70v) falsum. Deinde proponatur ‘Sortes (V157va) mentitur’. Si negatur vel dubitatur, contra: Sortes dicit falsum; igitur, mentitur Sortes. Antecedens patet ex casu. Nam (V*10ra) sequitur “Sortes dicit illam” ‘Sortes mentitur'; et illa principaliter signiflcat quod Sortes mentitur; et tantum unus Sortes est; igitur, Sortes dicit falsum; et solum dicit illam ‘Sortes mentitur'; igitur, illa est falsa”. Si conceditur, tunc sic: Sortes mentitur; igitur, dicit falsum; et solum dicit illam ‘Sortes mentitur; igitur, illa est falsa; et habet contradictorium; igitur, contradictorium suum est verum, scilicet, ‘Sortes non mentitur’. Et arguitur sic: Sortes non mentitur; igitur, illa est [205] vera; et igitur, ita est sicut illa significat principaliter, quod Sortes non mentitur; igitur, ita est quod Sortes non mentitur, quod est oppositum concessi. | (70) A similar sophism is this: suppose that Socrates says ‘Socrates is lying’ and only this and nothing else and that it principally signifies that Socrates is lying, and there is only one Socrates, and that every liar says a falsehood. Then ‘Socrates is lying’ is proposed. If it is denied or doubted, on the contrary: Socrates says a falsehood, therefore, Socrates is lying. The premise is clear from the scenario. For it follows: Socrates says ‘Socrates is lying', and it principally signifies that Socrates is lying, and there is only one Socrates, therefore, Socrates says a falsehood, and he only says ‘Socrates is lying’, therefore, it is false. If it is granted, then like this: Socrates is lying, therefore, he says a falsehood, and he only says ‘Socrates is lying’, therefore, it is false; and it has a contradictory, therefore, its contradictory is true, namely, ‘Socrates is not lying’. And it is argued like this: Socrates is not lying, therefore, it is true, and therefore, it is as it principally signifies, that Socrates is not lying, therefore, it is the case that Socrates is not lying, which is the opposite of what was granted. |
(71) Solutio: Concedendum quod Sortes mentitur. Et concedendum est quod illa est falsa. Et concedendum est quod habet contradictorium. Et neganda est consequentia “igitur, eius contradictorium est verum” eo quod suum contradictorium significat aliter quam est. Et sic duo contradictoria sunt simul falsa, ut patet per conclusionem ultimam. | (71) Solution: it should be granted that Socrates is lying, and it should be granted that it is false, and it should be granted that it has a contradictory. And the inference, ‘therefore, its contradictory is true’ should be denied, in that its contradictory signifies other than it is. And thus two contradictories are false at the same time, as is clear from the ⟨third and⟩ final thesis. |
(72) Aliud sophisma, quod Sortes solum iuret istam ‘Sortes est periurus’ et quod tantum sit unus Sortes et illa principaliter significet quod Sortes est periurus. Hoc posito, concedendum est quod Sortes est periurus et quod illa ‘Sortes est periurus’ est falsa eo quod falsificat se, ut satis patet. Quia vero illa solutio in istis insolubilibus de se est satis manifesta, ideo ad alia in quibus magis latet me converto. | (72) Another sophism, that Socrates only judges this, ‘Socrates is perjured’, and that there is only one Socrates and that it principally signifies that Socrates is perjured. Supposing this, it should be granted that Socrates is perjured and that ‘Socrates is perjured’ is false in that it falsifies itself, as is clear enough. Indeed, because the solution in these insolubles is self-evident enough, therefore, I turn to others in which it is more hidden. |
IV | |
(73) Iam restat insolubilium ex mixtione actus nostri cum proprietate vocis nascentium solutionem narrare. Insolubile autem sic acceptum est triplex. Quoddam est in quo ponuntur signa ex impositione significativa proprietatem vocis et actus ex quo fit insolubile. Aliud est in quo ponuntur signa ex impositione significativa proprietatem vocis et privationem actus ex quo fit insolubile. Tertium est in quo ponuntur signa ex impositione significativa proprietatem vocis et actionem vel privationem actus ex quo fit insolubile. Exemplum primi, sicut ‘Sortes dicit falsum’, ‘Sortes legit falsum’, ‘Sortes cogitat falsum’, et his similia. Exemplum secundi: ‘Illa (C71r) propositio nescitur a te’, ‘Omnis propositio nescitur’, ‘Aliqua propositio non creditur'“. Exem[200]plum tertii: ‘Sortes est albus’, ‘Sortes est aeger’, ‘Sortes est currens’, aliquibus casibus positis, et similia. | (73) It now remains to describe the solution to insolubles arising from a mixture of acts of ours and a property of speech. Now an insoluble taken this way is of three kinds. One is that in which signs occur signifying by imposition a property of speech and an act from which an insoluble is made. Another is that in which signs occur signifying by imposition a property of speech and the absence of an act from which an insoluble is made. The third is that in which signs occur signifying a property of speech and the presence or absence of an act from which an insoluble is made. An example of the first, e.g., ‘Socrates says a falsehood’, ‘Socrates reads a falsehood’, ‘Socrates thinks a falsehood’ and similar. An example of the second, e.g., ‘This proposition is unknown by you’, ‘Every proposition is unknown’, ‘Some proposition is not believed’. An example of the third: ‘Socrates is white’, ‘Socrates is sick’, ‘Socrates is running', positing some scenarios, and similar. |
(74) De istis exemplis per ordinem dicetur. Et primo de primis. Sit igitur hoc sophisma ‘Sortes dicit falsum’, posito illo casu quod tantum sit unus Sortes et quod dicat tantum illam propositionem ‘Sortes dicit falsum’ et nullam aliam et quod illa principaliter significet quod Sortes dicit falsum. Deinde proponatur ‘Sortes dicit falsum’. Si negatur vel dubitatur, contra: Contradictorium illius repugnat casui; igitur, (V*10rb) contradictorium eius est negandum. Et ultra: igitur, illa est concedenda. Antecedens probo, quia ex contradictorio eius cum casu sequitur contradictorium alterius partis casus; et casus per se est possibilis; igitur, contradictorium eius repugnat casui. Assumptum probatur sic: Proponatur, scilicet, ‘Sortes non dicit falsum’ cum casu. Et arguitur sic: Sortes non dicit falsum; et dicit propositionem principaliter significantem sicut (V157vb) est vel aliter quam est; igitur, Sortes dicit verum. Tunc sic: Sortes dicit verum; et Sortes dicit illam ‘Sortes dicit falsum’; igitur, illa est vera. Et ultra: igitur, ita est sicut illa principaliter significat; et illa solum significat quod Sortes dicit falsum; igitur, ita est quod Sortes dicit falsum. Et ultra: igitur, Sortes dicit falsum, quod est oppositum propositionis positae cum casu. Si conceditur, videlicet, ‘Sortes dicit falsum', tunc sic: Sortes dicit falsam; et solum dicit illam ‘Sortes dicit falsum’; igitur, illa est falsa; et habet contradictorium; igitur, eius contradictorium est verum, scilicet, ‘Sortes non dicit falsum’. Et ultra: igitur, ita est sicut illa principaliter significat; et illa solum significat quod Sortes non dicit falsum; igitur, ita est quod Sortes non dicit <falsum>. Et ultra: igitur, Sortes non dicit falsum, quod est oppositum prius conccssi. | (74) We discuss these examples in order, and first ⟨examples⟩ of the first. So take this sophism 'Socrates says a falsehood’, positing the scenario that there is only one Socrates and that he says only this proposition, ‘Socrates says a falsehood’ and no other, and that it principally signifies that Socrates says a falsehood. Then ‘Socrates says a falsehood’ is proposed. If it is denied or doubted, on the contrary: its contradictory is inconsistent with the scenario, therefore, its contradictory should be denied. Accordingly, it should be granted. I prove the premise, because from its contradictory together with the scenario there follows the contradictory of the other part of the scenario, and the scenario is inherently possible, therefore, its contradictory is inconsistent with the scenario. The claim is proved like this: 'Socrates does not say a falsehood’ is combined with the scenario. And it is argued like this: Socrates does not say a falsehood, and says a proposition principally signifying as it is or other than it is, therefore, Socrates says a truth. Then like this: Socrates says a truth, and Socrates says this, ‘Socrates says a falsehood’, therefore, it is true. Accordingly, it is as it principally signifies, and it only signifies that Socrates says a falsehood, therefore, it is the case that Socrates says a falsehood. Accordingly, Socrates says a falsehood, which is the opposite of the proposition posited with the scenario. If ‘Socrates says a is granted, then like this: Socrates says a falsehood, and he only says ‘Socrates says a falsehood’, therefore, it is false; and it has a contradictory, therefore, its contradictory is true, namely, ‘Socrates does not say a falsehood’. Accordingly, it is as it principally signifies, and it only signifies that Socrates does not say a falsehood, therefore, it is the case that Socrates does not say ⟨a falsehood⟩ . Accordingly, Socrates does not say a falsehood, which is the opposite of what was earlier granted. |
(75) Solutio: Concedenda est quod Sortes dicit falsum; et concedendum est quod illa est falsa. Et concedendum est quod habetur contradictorium. Et neganda est consequentia “Igitur. eius contradictorium est verum” quia eius contradictorium significat aliter quam est. Et quod consequentia non valet patet per conclusionem ultimam. | (75) Solution: it should be granted that Socrates says a falsehood, and it should be granted that it is false. And it should be granted that it has a contradictory. And the inference, “therefore, its contradictory is true” should be denied, because its contradictory signifies other than it is. And that the inference is not valid is clear by the ⟨third and⟩ last thesis. |
[207] | |
(76) Aliud sophisma: Ponatur quod tantum sint duo Sortes et quod uterque illorum dicat talem propositionem ‘Sortes dicit falsum’ et quod non dicant aliquam aliam (C71v) vel aliquas alias et quod utraque illarum dictarum principaliter significet quod Sortes dicit falsum. Deinde proponitur ‘Sortes dicit falsum’. Si negatur vel dubitatur, contra: Contradictorium eius repugnat casui; igitur, illa est sequens ex casu. Nam ex contradictorio illius cum casu sequitur oppositum alterius partis casus; igitur, contradictorium illius repugnat casui. Assumptum probatur sic: Ponatur contradictorium illius cum casu. Et arguitur sic: Sortes non dicit falsum; et Sortes dicit propositionem significantem principaliter sicut est vel aliter quam est; igitur, Sortes dicit verum; et qua ratione alter illorum dicit verum, uterque illorum dicit verum; igitur, uterque illorum dicit verum; et uterque illorum dicit illam propositionem ‘Sortes dicit falsum’ principaliter significantem quod Sortes dicit falsum; igitur, ita est quod Sortes dicit falsum, quod est oppositum alterius partis casus. Si conceditur, tunc sic: Sortes dicit falsum; et utraque illarum propositionum dictarum principaliter sic significat; igitur, utraque illarum principaliter significat sicut est; et neutra falsificat se; igitur, utraque illarum est vera. | (76) Another sophism: suppose that there are only two Socrates and that each of them says the proposition ‘Socrates says a falsehood’, and that they do not say anything else, and that each of those utterances principally signifies that Socrates says a falsehood. Then ‘Socrates says a falsehood’ is proposed. If it is denied or doubted, on the contrary: its contradictory is inconsistent with the scenario; therefore, it follows from the scenario. For from its contradictory together with the scenario the opposite of the other part of the scenario follows; therefore, its contradictory is inconsistent with the scenario. The claim is proved like this: posit its contradictory with the scenario, and argue like this: Socrates does not say a falsehood, and Socrates says a proposition principally signifying as it is or other than it is, therefore, Socrates says a truth; and for the reason that one of them says a truth, each of them says a truth; therefore, each of them says a truth; and each of them says that proposition, ‘Socrates says a falsehood’ principally signifying that Socrates says a falsehood; therefore, it is the case that Socrates says a falsehood, which is the opposite of one part of the scenario. If it is granted, then like this: Socrates says a falsehood, and each of the said propositions principally signifies in that way, therefore, each of them principally signifies as it is, and neither falsifies itself, therefore, each of them is true. |
(77) Solutio: Conceditur quod Sortes dicit falsum. Et conceditur quod utraque illarum significat principaliter sicut est. Et dicendum quod utraque falsificat se. Et hoc illo modo: Sortes dicit falsum; et omnis Sortes est alter (V*10va) illorum; igitur, alter illorum dicit falsum; et nulla ratio potest assignari quare unus dicit falsum quin eadem vel consimili alius dicit falsum; igitur, in tali casu posito uterque illorum dicit falsum; et illi duo solum dicunt illas duas, scilicet, ‘Sortes dicit falsum’, ‘Sortes dicit falsum’; igitur, illae duae sunt falsae. Et sic utraque illarum est falsa et falsificat se. | (77) Solution: it is granted that Socrates says a falsehood, and it is granted that each of them signifies principally as it is. And it should be said that each falsifies itself, and this is in this way: Socrates says a falsehood, and each Socrates is one of them, therefore, one of them says a falsehood, and there is no reason why one of them says a falsehood rather than that the other says a falsehood. Therefore, in the given scenario each of them says a falsehood, and these two only say those two things, namely, ‘Socrates says a falsehood’ and ‘Socrates says a falsehood’, therefore, both are false. And thus each of them is false and falsifies itself. |
(78) Simile sophisma est: Ponatur quod Sortes dicat illam ‘Plato dicit falsum’ et Plato dicat illam ‘Sortes non dicit falsum’ et quod non dicant aliquas alias quam illas et quod illae propositiones sic principaliter [208] significent et quod tantum sit (C72r) unus Sortes et unus Plato. Illo casu posito, dicendum est quod Sortes non dicit falsum et quod illa est falsa eo quod falsificat se. Et concedendum est quod Plato dicit falsum. Et illa est vera quia significat sicut est et non falsificat se. | (78) There is a similar sophism: suppose that Socrates says ‘Plato says a falsehood’ and Plato says ‘Socrates does not say a falsehood’, and they do not say anything other than this and that these propositions principally signify in this way, and that there is only one Socrates and one Plato. In that scenario, it should be said that Socrates does not say a falsehood and that ⟨what Socrates says⟩ is false in that it falsifies itself. And it should be granted that Plato says a falsehood. And ⟨what Plato says⟩ is true because it signifies as it is and does not falsify itself. |
(79) Simile est in parte hoc sophisma: Ponatur quod tantum unus Sortes sit et dicat solum talem propositionem ‘Plato dicit falsum’ et sit tantum unus Plato qui dicat solum talem ‘Sortes dicit falsum’, et quod illae propositiones principaliter sic (V158ra) significent. Hoc posito, dicendum est quod Sortes dicit falsum et similiter Plato et quod utraque illarum est falsa quia utraque illarum falsificat se et hoc mediate. Nam illa dicta a Sorte falsificat illam dictam a Platone et hoc immediate. Et illa dicta a Platone falsificat illam dictam a Sorte et hoc immediate. Et sic utraque illarum falsificat se ipsam mediate sicut patet in divisione secunda particulae primae. | (79) The ⟨next⟩ sophism is similar in part: suppose that there is only one Socrates and he says only the proposition ‘Plato says a falsehood’, and there is only one Plato, who says only this, 'Socrates says a falsehood’, and that these propositions principally signify in this way. Supposing this, it should be said that Socrates says a falsehood and similarly Plato, and that each of them is false because each of them falsifies itself and indirectly so. For what was said by Socrates falsifies what was said by Plato and directly, and what was said by Plato falsifies what was said by Socrates and directly. And in this way each of them falsifies itself indirectly as is clear in the second division of the first section (§§4-8). |
(80) Solutis insolubilibus primi membri huius divisionis iam restat solvere insolubilia secundi membri eius divisionis. Sit hoc sophisma ‘a propositio nescitur’. Proponatur ille casus quod a sit illa propositio ‘a propositio nescitur’, et sit unum a omne a, et quod illa propositio principaliter significet quod a propositio nescitur. Deinde proponatur ‘a propositio nescitur’. Si negatur vel dubitatur, contra: Cum casu non stat quod a propositio sciatur; et a est una propositio; et casus est admissus; igitur, concedendum est quod a propositio nescitur. Primum antecedens probatur sic, quia ex illa propositione ‘a scitur' cum casu sequitur oppositum illius, ‘a nescitur’; igitur, illa ‘a scitur’ non stat cum casu. Assumptum probatur sic: Nam sequitur “a scitur; igitur, scitur ita esse sicut a significat”. Et ultra: igitur, ita est sicut a significat; sed per casum a principaliter (C72v) significat quod a nescitur; igitur, a nescitur. Et sic ex illa ‘a scitur’ cum casu sequitur suum contradictorium. Si conceditur ‘a nescitur’, tunc sic: Ita est quod a nescitur; et tu firmiter consideras de ista propositione et non dubitas an a [209] nesciatur; igitur, scis quod a nescitur. Tunc sic: (V*10vb) Tu scis quod a nescitur; et tu scis quod a principaliter sic significat; igitur, tu scis quod ita est sicut a significat principaliter; et tu scis a principaliter' sic significare; igitur, tu scis a; igitur, a scitur, quod est oppositum illius ‘a nescitur’ vel suum repugnans. | (80) Having solved insolubles of the first member of this division, it remains ⟨next⟩ to solve insolubles of the second member of the division. Take this sophism: ‘Proposition A is unknown’. Suppose as scenario that A is the proposition ‘Proposition A is unknown’, and that there is only one A, and that the proposition principally signifies that proposition A is unknown. Then ‘Proposition A is unknown’ is proposed. If it is denied or doubted, on the contrary: it is inconsistent with the scenario that proposition A is known, and A is a proposition, and the scenario was admitted, therefore, it should be granted that proposition A is unknown. The first premise is proved like this: because from the proposition ‘A is known’ together with the scenario there follows its opposite, ‘A is unknown'; therefore, ‘A is known’ is inconsistent with the scenario. The claim is proved like this, for it follows: A is known, therefore, it is known to be as A signifies. Accordingly, it is as A signifies, but by the scenario, A principally signifies that A is unknown, therefore A is unknown. And thus from ‘A is known’ with the scenario its contradictory follows. If ‘A is unknown’ is granted, then like this: it is the case that A is unknown, and you firmly consider this proposition and do not doubt whether A is unknown, therefore, you know that A is unknown. Then like this: you know that A is unknown, and you know that A principally signifies like this, therefore, you know that it is as A signifies principally, and you know A principally signifies in this way, therefore, you know A, therefore, A is known, which is the opposite of ‘A is unknown’ or inconsistent with it. |
(81) Solutio: Admisso casu, concedenda est illa ‘a nescitur’. Et concedendum est quod ego scio a sic principaliter significare. Et neganda est consequentia “igitur scio a”. Sed oportet addere quod a non est pertinens ad inferendum se ipsum fore nescitam. Bt si illud addatur, illud est negandum. Nam sequitur immediate “a nescitur; igitur, a nescitur “. | (81) ⟨Solution:⟩ having admitted the scenario, ‘A is unknown’ should be granted, and it should be granted that I know A to signify principally in this way. And the inference, “therefore, I know A "should be denied. But it is necessary to add that A is not relevant to inferring itself not to be known. And if that is added, it should be denied. For it follows directly, A is unknown, therefore, A is unknown. |
(82) Simile sophisma est hoc: Ponatur quod tantum illa propositio sit ‘Omnis propositio nescitur et quod illa principaliter sic significet quod omnis propositio nescitur, et hoc bene sciatur. Quo posito, concedenda est hoc ‘Omnis propositio nescitur’. Et concedendum est quod scitur ita esse sicut illa significat. Et neganda est consequentia “igitur, illa scitur” quia illa est pertinens ad inferendum se ipsum fore nescitam. Ideo est nescita. Antecedens probatur: Nam sequitur “Omnis propositio nescitur; illamet est propositio; igitur, illamet nescitur”. Et ultra: igitur, est nescita. | (82) A similar sophism is this: suppose that the only proposition is ‘Every proposition is unknown', and that it principally signifies in this way that every proposition is unknown, and this is well known. Supposing this, ‘Every proposition is unknown’ should be granted. And it should be granted that it is known that it is as it signifies. And the inference, ‘therefore, it is known', should be denied, because it is relevant to inferring itself to be unknown. Therefore, it is unknown. The premise is proved, for it follows: every proposition is unknown, this is a proposition, so it is unknown. Accordingly, it is unknown. |
(83) Aliud sophisma: Ponatur quod haec propositio ‘Haec non creditur’ principaliter significet quod hoc non creditur et quod per ly ' hoc' demonstretur illa eadem. Hoc posito (C73r), dicendum est quod haec non creditur. Et concedendum est quod creditur ita esse sicut illa principaliter significat et quod creditur illa sic significare. Et negatur consequentia “igitur, illa est credita” quia (V158rb) est pertinens ad inferendum se ipsam fore non creditam. Et quaelibet talis est non credita. | (83) Another sophism: suppose that this proposition, ‘This is not believed’, principally signifies that this is not believed and that ‘this’ refers to ⟨the proposition⟩ itself. Supposing this, it should be said that this is not believed. And it should be granted that it is believed that it is as it principally signifies and that it is believed that it signifies in this way. And the inference, 'therefore, it is believed’, should be denied, because it is relevant to inferring itself not to be believed. And anything like this is not believed. |
(84) Pro quo est notandum quod sicut quaelibet propositio pertinens ad inferendum se ipsam fore falsam est falsa ita quaelibet propositio pertinens ad inferendum se ipsam fore nescitam vel non creditam est nescita vel non credita. Et sicut non omnis propositio pertinens ad [210] inferendum se fore veram est vera ita non omnis propositio pertinens ad inferendum se ipsam scitam fore vel creditam est scita vel credita. | (84) Here it should be noted that just as every proposition relevant to inferring itself to be false is false, so too every proposition relevant to inferring itself to be unknown or not believed is 18unknown or not believed. And just as not every proposition relevant to inferring itself to be true is true, so too not every proposition relevant to inferring itself to be known or believed is known or believed. |
(85) Solutis insolubilibus secundi membri divisionis, solvenda sunt insolubilia tertii membri. Sit igitur hoc sophisma ‘Sortes est aeger'. Ponatur ille casus quod omnis homo aeger dicat falsum et omnis homo sanus dicat verum et solum talis et quod Sortes solum dicat illam ‘Sortes est aeger’ quae principaliter sic significet. Deinde proponatur ‘Sortes est aeger'. Si negatur vel dubitatur, contra: Oppositum illius repugnat casui; igitur, casu admisso illa est concedenda. Assumptum probatur sic: Ex opposito illius cum casu sequitur illa propositio ‘Sortes est aeger’; igitur, oppositum illius ‘Sortes est aeger' repugnat casui. (K*llra) Antecedens probatur sic: Sequitur “ Sortes non est aeger; et Sortea est homo; igitur, Sortes est sanus; et omnis homo sanus dicit verum; ergo, Sortes dicit verum; et solum dicit illam ‘Sortes est aeger '; ergo, illa est vera ‘Sortes est aeger'. Et ultra: ergo, ita est sicut illa principaliter significat; et per casum illa principaliter significat (C73v) quod Sortes est aeger; ergo, ita est quod Sortes est aeger. Et ultra: ergo, Sortes est aeger. Si conceditur, ‘Sortes est aeger', tunc sic: Sortes est aeger; et omnis homo aeger dicit falsum; ergo, Sortes dicit falsum; et solum dicit illam ‘Sortes est aeger '; ergo, haec est falsa ‘Sortes est aeger '; et habet contradictorium; ergo, suum contradictorium, scilicet, ‘Sortes non est aeger’, est verum. Et ultra: igitur, ita est sicut illa principaliter significat; et illa significat principaliter quod Sortes non est aeger; ergo, ita est quod Sortes non est aeger, quod est oppositum concessi. | (85) Having solved insolubles of the second member of the division, insolubles of the third member should be solved. Therefore, take his sophism ‘Socrates is sick’. Posit the scenario that every sick man says a falsehood and every healthy man says a truth and only that, and that Socrates only says ‘Socrates is sick’, which principally signifies in that way. Then 'Socrates is sick’ is proposed. If it is denied or doubted, on the contrary: its opposite is inconsistent with the scenario, therefore, having admitted the scenario it should be granted. The claim is proved like this: from its opposite together with the scenario, the proposition ‘Socrates is sick’ follows; therefore, the opposite of ‘Socrates is sick’ is inconsistent with the scenario. The premise is proved like this: it follows: Socrates is not sick, and Socrates is a man, therefore, Socrates is healthy, and every healthy man says a truth, therefore, ‘Socrates is sick’ is true. Accordingly, it is as it principally signifies, and by the scenario it principally signifies that Socrates is sick. If ‘Socrates is sick’ is granted, then like this: Socrates is sick, and every sick man says a falsehood, therefore, Socrates says a falsehood, and he only says ‘Socrates is sick', therefore, ‘Socrates is sick’ is false, and it has a contradictory, therefore, its contradictory, namely, ‘Socrates is not sick’, is true. Accordingly, it is as it principally signifies, and it signifies principally that Socrates is not sick, therefore, it is the case that Socrates is not sick, which is the opposite of what was granted. |
(86) Solutio: Admisso casu, haec est concedenda ‘Sortes est aeger'. Et concedendum est quod Sortes dicit falsum. Et concedendum est quod illa est falsa ‘Sortes est aeger’ quia se ipsam falsificat. Et conccdendum est quod habet contradictorium. Et neganda est illa consequentia “igitur, suum contradictorium est verum”, sicut patet per conclusionem ultimam. | (86) Solution: having admitted the scenario, it should be granted that Socrates is sick.[24] And it should be granted that Socrates says a falsehood. And it should be granted that ‘Socrates is sick’ is false because it falsifies itself. And it should be granted that it has a contradictory. And the inference, “therefore, its contradictory is true” should be denied, as is clear by the last thesis. |
(87) Simile est si ponatur quod omnis homo albus videat falsum et nullus alius et quod Sortes videat illam solam ‘Sortes est albus’ et quod illa principaliter significet quod Sortes est albus, et quod tantum sit unus homo, scilicet, Sortes. Hoc proposito, concedenda est haec ‘Sortes est albus’. Et concedendum est quod illa est falsa ‘Sortes est albus’ quia se falsificat. Nam sequitur “Omnis homo albus videt falsum; Sortes est albus; ergo, Sortes videt falsum; et solum videt illam ‘Sortes est albus’; [211] ergo, illa est falsa ‘Sortes est albus’”. Et sic illa est falsa quia falsificat se. Et suum contradictorium est falsum, haec, scilicet,’Sortes non est albus’, quia significat aliter quam est. | (87) It is similar if it is supposed that every white man sees a falsehood and no one else ⟨does⟩ and that Socrates sees only ‘Socrates is white’ and that it principally signifies that Socrates is white, and that there is only one man, namely, Socrates. Supposing this, it should be granted that Socrates is white,[25] and it should be granted that ‘Socrates is white’ is false because it falsifies itself. For it follows: every white man sees a falsehood, Socrates is white, therefore, Socrates sees a falsehood, and he only sees ‘Socrates is white’, therefore, ‘Socrates is white’ is false. And thus it is false because it falsifies itself. And its contradictory is false, namely, 'Socrates is not white’, because it signifies other than it is. |
(88) (V158va) Simile est si ponatur quod omnis homo currens audiat falsum et solum talis et Sortes audiat illam ‘Sortes est currens’ et nullam aliam et quod illa principaliter significet quod Sortes est currens. Et sit tantum unus Sortes. Hoc proposito, est concedenda ‘Sortes est currens’. Et concedendum est quod est falsa quia falsificat se. Et est sicut in priori sophismate. | (88) It is similar if one supposes that every running man hears a falsehood and only that, and that Socrates hears ‘Socrates is running’ and nothing else and that it principally signifies that Socrates is running. And suppose that there is only one Socrates. Supposing this, it should be granted that Socrates is running,[26] and it should be granted that ⟨‘Socrates is running’⟩ is false because it falsifies itself, and it is just as in the previous sophism. |
(89) Quia vero solutiones principaliter illae consistunt in hoc quod aliqua propositio se ipsam falsificat, iam congruit quasdam dubitationes huic repugnantes recitare et ut veritas elucescat illas solvere. Ex positione (C74r) praedicta sequuntur contradictoria; ergo, ipsa est impossibilis. Assumptum probatur sic: Nam si ponatur quod non omnis propositio falsa falsitieat se, et tamen ex illa sequitur quod omnis propositio falsificat (V*11rb) se; igitur, et cetera. Assumptum probatur sic: Nam si foret aliqua propositio falsa quae non falsificat se, sit igitur, gratia exempli, haec ‘Homo est asinus’, sic principaliter significando, quod, scilicet, homo est asinus. Et quod illa falsificet se probatur sic: Nam sequitur “Homo est asinus; et numquam homo est asinus quando haec non est falsa ‘Homo est asinus’; igitur, haec est falsa ‘Homo est asinus’”. Et sic ex illa propositione ‘Homo est asinus’ cum alia sequitur ipsam falsam fore. Et ex illa alia sine illa ‘Homo est asinus’ non sequitur illud; igitur, illa est pertinens ad inferendum se ipsam fore falsam; igitur, ipsa est falsificans se. | (89) But because these solutions chiefly rest on the claim that some proposition falsifies itself, it is now appropriate to rehearse certain doubts that militate against this, and to dispel them so that the truth may become clear. ⟨First, it is alleged that⟩ from the opinion described above contradictories follow, therefore, it is impossible. The claim is proved like this: for if it is supposed that not every false proposition falsifies itself, nonetheless, it follows from it that every proposition falsifies itself, therefore, ⟨it is impossible⟩. The claim is proved like this: for if there were a false proposition which did not falsify itself, let it be, therefore, for example, ‘A man is an ass’, principally signifying in that way, namely, that a man is an ass. That it falsifies itself is proved like this: for it follows, a man is an ass, and never is a man an ass when ‘A man is an ass’ is not false, therefore, ‘A man is an ass’ is false. And thus from the proposition, 'A man is an ass’ with others it follows that it is false. And from the others without ‘A man is an ass’ it does not follow, therefore, it is relevant to inferring itself to be false, therefore, it falsifies itself. |
(90) Secundo sic: Aliqua propositio vera falsificat se; ergo, multo fortius quaelibet propositio falsa falsificat se. Assumptum probatur sic: Si ponatur quod haec ‘Homo est asinus’ principaliter significat quod nullus homo est asinus, tunc notum est quod illa est vera. Et quod illa falsificat se probatur sic: Nam sequitur “Homo est asinus; et illa principaliter significat quod nullus homo est asinus; illa ‘Homo est asinus’, [212] igitur, est falsa”. Et ipsa est pertinens ad inferendum se ipsam fore falsam, quare se ipsam falsificat. | (90) Secondly, like this: some true proposition falsifies itself, therefore, a fortiori every false proposition falsifies itself. The claim is proved like this: if it is supposed that ‘A man is an ass’ principally signifies that no man is an ass, then it is readily seen that it is true. And that it falsifies itself is proved like this: for it follows, a man is an ass, and it principally signifies that no man is an ass; therefore ‘A man is an ass’ is false. So it is relevant to inferring itself to be false, hence it falsifies itself. |
(91) Tertio ad idem sic: Sit illa propositio ‘Haec est propositio’ principaliter significans quod haec est propositio. Et demonstretur per ly ‘haec’ illa eadem propositio ‘Haec est propositio’. Hoc posito, haec est vera ‘Haec est propositio’. Et illa falsificat se, quod probatur sic: Nam sequitur “Haec est propositio; et non est vera; igitur, est falsa”. Ergo, falsificat se. | (91) Thirdly, the same thing ⟨is proved⟩ like this: let the proposition ‘This is a proposition 'principally signify that this is a proposition. And let ‘this’ refer to the very proposition ‘This is a proposition’ itself. Supposing this, ‘This is a proposition’ is true. And that it falsifies itself is proved like this: for it follows, this is a proposition, and it is not true, therefore, it is false. So it falsifies itself. |
(92) Quarto sic: Aliqua propositio falsificans se non falsificat se; ergo, illa propositio est impossibilis. Assumptum probatur: Ponatur quod tantum sit haec propositio ‘Nullum verum est’ quae (C74v) principaliter significet quod nullum verum est. Tunc secundum illam positionem illa falsificat se. Et quod illa non falsificet se probatur sic, quia si falsificet se, tunc illo modo esset arguendum: Nullum verum est; et illa propositio est; igitur, illa non est vera. Et ultra sic: Illa non est vera; et illa est propositio significans sicut est vel aliter quam est; igitur, illa est falsa. Et ex hoc non sequitur quod illa falsificet se eo quod illa est impertinens ad inferendum se ipsam fore falsam. Nam ex praemissis captis in antecedente sine illa sequitur quod illa sit falsa; ergo, summendo illam cum casu superfluit. Et per consequens illa est impertinens. Assumptum probatur sic: Nam sequitur sine illa “Haec non est vera; et haec significat sicut est vel aliter quam est; ergo, hacc est falsa”. Ex quo patet quod propositio illo modo non falsificat se; sed nec alio modo; ergo, nullo modo falsificat se, cuius oppositum ponit illa opinio. | (92) Fourthly, like this: some proposition falsifying itself does not falsify itself, therefore, that opinion[27] is impossible. The claim is proved: suppose that there is only this proposition, ‘No truth exists’, which principally signifies that no truth exists. Then according to this opinion, it falsifies itself. And that it does not falsify itself is proved like this, because if it falsified itself, then it should be argued in this way: no truth exists, and that proposition exists, therefore, it is not true. Accordingly, it is not true, and it is a proposition signifying as it is or other than it is, therefore, it is false. And from this it does not follow that it falsifies itself in that it is irrelevant to inferring itself to be false. For from the other assumptions used in the premises, it follows that it is false, therefore, adding it to the scenario is superfluous. And in consequence, it is irrelevant. The claim is proved like this: for it follows without it: it is not true, and it signifies as it is or other than it is, therefore, it is false. From this it is clear that the proposition does not falsify itself in that way, nor in any other way, therefore, it does not falsify itself in any way, whose opposite this opinion claimed. |
(93) Quinto sic: Aliqua est propositio neque vcra neque falsa quae falsificat se; ergo, non omnis propositio falsificans se est (V158vb) falsa, cuius oppositum ponit illa opinio. Antecedens probatur sic: Haec est [213] huiusmodi ‘Haec significat aliter quam est’. Et hac posita sequitur quod illa non (V*11va) est vera nec falsa eo quod illa est pertinens ad inferendum se ipsam non significare sicut est et per consequens non significat sicut est nec aliter quam est. Consequentia patet per superius dicta. Et quod illa falsificet se probatur sic: Nam sequitur immediate “Haec significat aliter quam est; ergo, haec est falsa”. | (93) Fifthly, like this: some proposition which falsifies itself is neither true nor false, therefore, not every proposition falsifying itself is false, the opposite of which this opinion claims. The premise is proved like this: ‘This signifies other than it is’ is of this sort. Supposing this, it follows that it is not true nor ⟨is it⟩ false in that it is relevant to inferring itself not to signify as it is and in consequence does not signify as it is nor other than it is. The inference is clear by what was said above. And that it falsifies itself is proved like this: for it follows directly, this signifies other than it is, therefore, this is false. |
(94) Aliae obiectiones multae possunt fieri quarum solutio patebit ex solutione illorum. | (94) Many other objections can be made the solution of which will be clear from the solution of these. |
(95) Ideo ad primam obiectionem respondetur sic, negando assumptum. Et ad argumentum negatur quod illa falsificat se ‘Homo est asinus’. Et quando arguitur “Homo est asinus; et numquam homo est asinus quando haec non est falsa; ergo, haec est falsa”, neganda est haec consequentia et antecedens similiter. Consequentia non valet pro tanto quia minor est una temporalis convertibilis cum hac copulativa ‘Numquam homo est asinus’ et haec non est falsa ‘Homo est asinus’. Et manifestum est quod haec non valet “Homo est asinus; et numquam homo est asinus et haec non est falsa ‘Homo est asinus’; ergo, haec est falsa”. Sed oportet addere quod haec propositio significat sicut est vel aliter quam est. Et si ita (C75r) addatur, ergo sequitur sine illa ‘Homo est asinus’ in principio capta. Et antecedens est falsum similiter. Nam illa temporalis convertitur cum una copulativa falsa. Nam haec est falsa ‘Hoc non est falsum’, demonstrata illa ‘Homo est asinus’. | (95) Hence to the first objection (§89), it is replied like this, denying the main claim. And to the argument, it is denied that ‘A man is an ass’ falsifies itself. And when it is argued, “A man is an ass, and never is a man an ass when this is not false, therefore, this is false”, this inference is denied, and the premise similarly. The inference is not valid for as much as the minor is a tensed ⟨proposition⟩ convertible with this conjunction, ‘Never is a man an ass and "A man is an ass” not false’. And it is manifest that this is not valid: a man is an ass, and never is a man an ass and ‘A man is an ass’ not false, therefore, this is false. But it is necessary to add that this proposition signifies as it is or other than it is. And if it is so added, then it follows without ‘A man is an ass’ used in the main part. And the premise is similarly false. For that tensed ⟨proposition⟩ is equivalent to a false conjunction. For ‘This is not false’ is false, referring to ‘A man is an ass’. |
(96) Ad secundum nego assumptum. Et ad consequentiam factam “Homo est asinus, et cetera; ergo, illa est falsa”, concedenda est conse[214]quentia et dicendum est quod consequentia non valet. Et tamen concedenda est eo quod nullo casu posito illa foret concedenda. Et per consequens quocumque casu possibili posito, illa est concedenda. Quod consequentia non valet manifeste patet si summatur propositio convertibilis cum illa ‘Homo est asinus’. Et ponatur loco illius haec, scilicet, ‘Nullus homo est asinus’ sic significando. Nam notum est quod hoc argumentum non valet “Nullus homo est asinus; et illa ‘Homo est asinus’ principaliter significat quod nullus homo est asinus; ergo, illa est falsa”. Sed magis sequitur oppositum, quod ipsa sit vera. Et illa consequentia convertitur cum priori; igitur, prior non valet. | (96) To the second (§90), I deny the main claim. And to the inference made, “A man is an ass etc., therefore, it is false”, the inference is granted and it should be said that the inference is not valid. But it is granted in that in no scenario supposed should it be granted. And inconsequence, whatever possible scenario is posited, it should be granted. That the inference is not valid is manifestly clear if a proposition equivalent to ‘A man is an ass’ is used. And suppose in its place this, namely, ‘No man is an ass’, signifying in that way. For it is known that this argument is not valid: no man is an ass, and ‘A man is an ass’ principally signifies that no man is an ass, therefore, it is false. But rather its opposite follows, that it is true. And the inference converts with the first, therefore, the first is not valid.[28] |
(97) Ad tertiam formam similiter negatur assumptum et dicendum est quod illa non falsificat se ‘Haec est propositio’. Et quando arguitur “Haec est propositio; et non est vera; ergo, est falsa”, negatur consequentia. Et dato quod consequentia valeat, argumentum non procederet eo quod minor est falsa, scilicet, quod ista non est vera. Pro quo est sciendum quod propositio falsificat se aut, sicut praedicebatur, mediate vel immediate, mediate quandocumque falsificat aliquam falsificantem illam, immediate quandocumque aliqua propositio significat sicut est vel aliter quam est et ex illa sola sequitur illam fore falsam vel ex illa cum totaliter sic esse sicut est et ex illa totaliter sic esse sine illa non sequitur illam fore salsam. Ex istis patet quod haec propositio ‘Haec est propositio’ non falsificat se eo quod ex ista cum aliter esse quam est (V*11vb) sequitur illam fore falsam. Sed ex hoc non sequitur quod illa [215] falsificat se. Sed oportet quod ex illa cum sic esse sicut est sequitur illam fore falsam ad hoc quod illa falsificat se. Et sic non est in proposito. Nam illa minor assumpta cum alia significat aliter quam est eo quod significat quod illa non” est vera. | (97) To the third argument (§91), the main claim is similarly denied and it should be said that ‘This is a proposition’ does not falsify itself. And when it is argued: “this is a proposition, and it is not true, therefore, it is false”, the inference is denied. And ⟨even⟩ given that the inference is valid, the argument would not proceed in that the minor is false, namely, that ⟨the proposition⟩ is not true. Here it should be recalled that a proposition falsifies itself either, as was described, indirectly or directly, indirectly whenever it falsifies something falsifying it, whenever any proposition signifies as it is or other than it is and from it alone it follows that it is false, or from it with its being wholly as it is, and from it without its being wholly as it is, it does not follow that it is false. From these it is clear that the proposition ‘This is a proposition’ does not falsify itself in that from it with its being other than it is it follows that it is false. But from this it does not follow that it falsifies itself. But it is necessary for it to falsity itself that from it with its being wholly as it is it follows that it is false. And such is not so in the case given, for the assumed minor with others signifies other than it is in that it signifies that it is not true. |
(98) Ad quartum nego assumptum cum casu ibidem posito (V159ra) et admisso. Dico quod illa falsificat se, sed non illo modo quo ibi arguitur. Sed sic: “Nullum verum est; et omnis propositio significans sicut est vel aliter quam est est illa, demonstrata illa ‘NuIIum verum est’; ergo, illa est falsa.” Et notum est quod ex minori non sequitur per se illud; et illa minor significat sicut est; ergo, illa prima falsificat se. | (98) To the fourth (§92), I deny the claim with the scenario proposed and admitted there. I say that it falsifies itself, but not in the way in which it is argued there, but like this: no truth exists, and it is every proposition signifying as it is or other than it is, referring to ‘No truth exists', therefore, it is false. And it should be obvious that it does not follow from the minor alone, and the minor signifies as it is, therefore, the ⟨’No truth exists’⟩ falsifies itself. |
(99) Ad ultimam obiectionem dico negando assumptum. Et quando capitur illa propositio ‘Haec significat aliter quam est’, concedo quod illa nec est vera nec falsa. Et nego quod illa falsificat se. Et concedo quod ex illa immediate sequitur quod illa sit falsa. Et nego consequentiam “igitur, illa falsificat se”. Sed oportet addere quod illa significet sicut est vel aliter quam est, quod non facit in proposito. | (99) To the last objection (§93), I deny the claim. And taking the proposition ‘This signifies other than it is’, I grant that it is neither true nor false. And I deny that it falsifies itself. I grant that from it, it directly follows that it is false. And I deny the inference, “therefore, it falsifies itself', but it is necessary to add that it signifies as it is or other than it is, which is not so in the case given. |
V | |
(100) His vero completis superest solvere quaedam sophismata quae apparent insolubilia et non sunt, sicut sint ‘a est scitum’,’Ista propositio significat aliter quam est’,’Illa propositio non significat aliter quam est’, ‘Ista propositio non significat sicut est’, et his similes. Sit ergo hoc sophisma positum a est scitum’. Ponatur ille casus quod a sit altera illarum ‘Deus est’ quae sit scita, et ‘a nescitur’ quae sic principaliter significet, et hoc bene scias. et sit tantum unum a, et lateat te quae illarum sit a. Deinde ponatur ‘a est scitum’. Si conceditur vel dubitatur, contra: Nullo casu posito illa foret continue neganda; et tunc illa est [216] impertinens; ergo, adhuc est neganda. Minor patet eo quod non sequitur “a est altera illarum; ergo, a est scitum”. Si negatur ‘a est scitum’, contra: a est illa propositio ‘Deus est’ quae est scita; ergo, a est scitum. Illa consequentia est bona; et antecedens est dubium; igitur, consequens non est a te negandum. | (100) Having completed these ⟨remarks⟩ , it remains to solve some sophisms which appear to be insolubles but are not, e.g., ‘A is known’, ‘This proposition signifies other than it is’, ‘That proposition does not signify other than it is’, ‘This proposition does not signify as it is’, and similar ones. Therefore, take this sophism, ‘A is known’. Suppose as scenario that A is one of 'God exists’, which is known, and ‘A is unknown’, which principally signifies in the way that you well know, and let there be only one A, and it be hidden from you which of them is A. Then ‘A is known’ is proposed. If it is granted or doubted, on the contrary: in no scenario posited should it be invariably denied, and ⟨if not, even⟩ then it is irrelevant, therefore, it should still be denied. The minor is clear in that it does not follow: A is one of them, therefore, A is known. If ‘A is known’ is denied, on the contrary: A is the proposition ‘God exists’, which is known, therefore, A is known. The inference is good, and the premise is in doubt, therefore, the conclusion should not be denied by you.[29] |
(100a) Item negata illa ‘a est scitum’, proponatur illa ‘a nescitur a te’. Haec tunc est concedenda. Qua concessa, arguitur sic: Ita est quod a nescitur a te; et de illa firme consideras et scis qualiter illa signiflcat, et non dubitas an a nescitur a te; ergo, scis quod a nescitur a te. Et tunc sic: Tu scis quod a nescitur a te; et tu scis illam propositionem sic significare; et illa non est pertinens ad inferendum se ipsam fore nescitam; ergo, tu scis illam. Qua concessa, proponatur ‘Utraque illarum scitur’. Si negatur vel dubitatur, contra: ‘Deus est’ scitur a te, et ‘a nescitur’ a te scitur, et (V*12ra) illae duae tantum demonstrantur per ly ‘illarum’; ergo, utraque illarum scitur. Si conceditur, tunc sic: Utraque illarum scitur; a est alterum illarum; ergo, (C76r) a scitur. Et ultra: ergo, a est scitum, quod erat prius negatum. | (100a) Again, if ‘A is known’ is denied, let ‘A is unknown by you’ be proposed. Then it should be granted. If it is granted, it is argued like this: It is the case that A is unknown by you, and you have firmly thought about it, and you know in what way in signifies, and you do not doubt whether A is unknown by you, therefore, you know that A is unknown by you. And then like this: you know that A is unknown by you, and you know that the proposition signifies in that way, and it is not relevant to inferring itself to be unknown, therefore, you know it. Having granted this, ‘Both of them are known’ is proposed. If it is denied or doubted, on the contrary: ‘God exists’ is known by you, and ‘A is unknown’ is known by you, and only these two are referred to by ‘them’, therefore, each of them is known. If it is granted, then like this: each of them is known, A is one of them, therefore, A is known. Accordingly, A is known, which was earlier denied. |
(101) Admisso casu, neganda est haec ‘a est scitum’. Et ad primam formam concedenda est consequentia prima, scilicet, illa “a est illa ‘Deus est’ quae est scita; ergo, a est scitum”. Et secunda consequentia est neganda, illa, scilicet, “Illa consequentia est bona; et antecedens est tibi dubium; igitur, consequens non est a te negandum”, eo quod licet antecedens sit mihi dubium, tamen antecedens est a me negandum. Et per consequens non sequitur consequens fore concedendum. | (101) ⟨Solution:⟩ admitting the scenario, ‘A is known’ should be denied. And to the first argument against this response⟩, the first inference should be granted, namely, “A is ‘God exists', which is known, therefore, A is known”. And the second inference should be denied, namely, "The inference is good and the premise is in doubt for you, therefore, the conclusion should not be denied by you”, in that although the premise is in doubt for me, nonetheless, the conclusion[30] should be denied by me. And in consequence, it does not follow that the conclusion should be granted. |
[217] | |
(102) Ad secundam formam similiter negatur ‘a est scitum a me’. Et concedendum est totum sequens donec veniatur ad ultimum discursum (V159rb) factum in tertio primae figurae, concedendo et negando antecedens, scilicet, copulativam factam ex posito falso et non pertinente. Si tamen post concessionem primae partis ponatur prima pars cum secunda, tunc post positionem istius concedendum est quod a est scitum tamquam sequens ex posito. Et tunc est negandum quod a sit illa ‘a nescitur a te’ quia falsa et repugnans simpliciter. | (102) To the second argument (§100a), ‘A is known by me’ is similarly denied. And the whole sequence should be granted up to the last move made in the third mood of the first figure ⟨Darii⟩ , by granting ⟨it⟩ and denying the premise, namely, the conjunction made from a false assumption ⟨in the scenario and one⟩ that is not relevant.[31] But if after granting the first conjunct, the first conjunct is added to the second, then after it is proposed, it should be granted that A is known as following from the posit. And then it should be denied that A is ‘A is unknown by you’ because it is false and without any restriction ⟨it is⟩ inconsistent. |
(103) Aliud sophisma: ‘Illa propositio significat aliter quam est’. Ponatur quod illa sic principaliter significat. Et per ly ‘ista’ demonstretur illa eadem. Deinde proponatur ‘Illa propositio significat aliter quam est’. Si conceditur vel dubitatur, contra: Ex illa cum casu sequitur suum contradictorium; ergo, illa est neganda. Assumptum probatur sic: Sequitur “Illa propositio significat aliter quam est; ergo, non est ita sicut iIla propositio significat; et illa propositio solum significat quod illa propositio significat aliter quam est; ergo, non est ita quod illa propositio significat aliter quam est”. Et ultra: ergo, illa propositio non significat aliter quam est, quod est oppositum ipsius. Si negatur, contra: Proponatur ‘Illa non significat aliter quam est’. Qua concessa, arguitur sic: Illa non significat aliter quam est; et illa significat complexe; ergo, illa significat sicut est. Et ultra: igitur, ita est sicut ipsa significat. Et illa significat quod illa significat aliter quam est; ergo, ita est quod illa significat aliter quam est, quod erat negatum. | (103) Another sophism: ‘This proposition signifies other than it is’. Suppose that it principally signifies in that way, and ‘this’ refers to that very ⟨proposition⟩. Then ‘This proposition signifies other than it is’ is proposed. If it is granted or doubted, on the contrary: from it, together with the scenario, its contradictory follows, therefore, it should be denied. The claim is proved like this: it follows: this proposition signifies other than it is, therefore, it is not as this proposition signifies, and this proposition only signifies that this proposition signifies other than it is, therefore, it is not the case that this proposition signifies other than it is. A accordingly, this proposition does not signify other than it is, which is its opposite. If it is denied, on the contrary: let ‘It does not signify other than it is’ be proposed. If it is granted, it is argued like this: it does not signify other than it is, and it signifies complexly, therefore, it signifies as it is. Accordingly, it is as it signifies. And it signifies that it signifies other than it is, therefore, it is the case that it signifies other than it is, which was denied. |
[218] | |
(104) Solutio: Admisso casu, neganda est illa. Et neganda est haec consequentia “Illa non significat aliter quam est; et significat complexe; ergo, significat sicut est”. Sed oportet addere quod illa non foret pertinens ad inferendum se ipsam non significare sicut est. Et si illa addatur, illud est negandum. Nam sequitur immediate ex illa “Ista significat aliter quam est; ergo, illa non significat sicut est”. | (104) Solution: the scenario having been admitted, ⟨the proposition⟩ should be denied. And this inference should be denied: “it does not signify other than it is, and it signifies complexly, therefore, it signifies as it is”. But it is necessary to add that it is not relevant to inferring itself not to signify as it is. And if that is added, it should be denied. For it follows directly from it: it signifies other than it is, therefore, it does not signify as it is. |
(105) Contra illam solutionem arguitur sic: Data illa solutione sequitur illa conclusio quod aliqua sunt duo contradictoria sibi invicem contradicentia et unum illorum significat sicut est et aliud (V*12rb) non significat aliter quam est. Quod probatur sic: Nam ‘Illa propositio non significat aliter quam est', demonstrata per ly (C76v) ‘illa’ contradictoria illius, significat quod illa non significat aliter quam est; et ita est quod illa non significat aliter quam est; et illa negativa non est pertinens ad inferendum se ipsam non significare sicut est; ergo, illa significat sicut est. Et tamen affirmativa sibi contradicens non significat aliter quam est eo quod illa est pertinens ad inferendum se ipsam non significare sicut est. Et sic sequitur conclusio, quam concedo in quolibet casu mundi ubi est ita quod altera pars contradicens est pertinens ad inferendum se ipsam non significare sicut est, sicut est in proposito. Quare, et cetera. | (105) Against that solution it is argued like this: given that solution, the thesis follows that there are two mutually contradictory contradictories one of which signifies as it is while the other does not signify other than it is. This is proved like this: for ‘This proposition does not signify other than it is’, where ‘this’ refers to its contradictory, signifies that it does not signify other than it is. And it is the case that it does not signify other than it is, and that negative ⟨proposition⟩ is not relevant to inferring itself not to signify as it is, therefore, it signifies as it is. But the affirmative contradicting it does not signify other than it is in that it is relevant to inferring itself not to signify as it is. And in this way the thesis follows, which I grant in each scenario whatever where it is the case that each contradicting part is relevant to inferring itself not to signify as it is, just as in the given case. Therefore, ⟨it does not signify other than it is⟩.[32] |
(106) Simile est si ponatur quod tantum illa sit ‘Omnis propositio significat aliter quam est’ et ista sic praecise significet. Illo casu posito, neganda est illa ‘Omnis propositio significat aliter quam est’. Et dicendum quod illa nec significat sicut est nec aliter quam est, posito casu priori, eo quod illa est pertinens ad inferendum se ipsam non significare sicut est. | (106) It is similar if it is supposed that the only ⟨proposition⟩ is ‘Every proposition signifies other than it is’ and it signifies only in that way. Supposing that scenario, ‘Every proposition signifies other than it is’ should be denied. And it should be said that it neither signifies as it is nor other than it is, in the earlier scenario, in that it is relevant to inferring itself not to signify as it is. |
[219] | |
(107) Simile est in parte ‘Illa non significat sicut est'. Ponatur quod per ly ‘illa’ demonstratur eadem et quod illa sic praecise significat. Deinde proponatur ‘Illa non significat sicut est’. Si negatur vel dubitatur, contra: Oppositum illius non potest stare cum casu. Nam si potest poni, ponatur, et arguitur sic: Illa significat sicut est; ergo, ita est sicut illa significat. Et illa solum significat quod illa non significat sicut est; ergo, ita est sicut illa significat ‘Illa non significat sicut est’. Et sic sequitur contradictorium. Si conceditur ‘Illa non significat sicut est’ proponatur ‘Illa non significat sicut est’. Qua concessa, arguitur sic: Ita est quod illa non (V159va) significat sicut est; et illa sic principaliter significat; ergo, ita est sicut illa principaliter significat; ergo, significat sicut est, cuius oppositum est concessum. | (107) ‘This does not signify as it is’ is partially similar. Suppose that ‘this’ refers to the very same ⟨proposition⟩ and that it signifies only in that way. Then ‘This does not signify as it is’ is proposed. If it is denied or doubted, on the contrary: its opposite is not consistent with the scenario. For if it can be added, add it and argue like this: it signifies as it is, therefore, it is as it signifies. And it only signifies that it does not signify as it is, therefore, it is as ‘This does not signify as it is’ signifies. And in this way the contradictory follows. If ‘This does not signify as it is’ is granted, let ‘This does not signify as it is’ be proposed. Having granted it, argue like this: it is the case that it does not signify as it is, and it principally signifies in this way, therefore, it is as it principally signifies, therefore, it is as it signifies, the opposite of which was granted. |
(108) Solutio: Concedenda est illa ‘Illa non significat sicut est’. Et concedendum est quod ita est quod illa non significat sicut est. Et concedendum est quod illa sic principaliter significat. Et neganda est consequentia illa “ergo ita est sicut illa significat principaliter”. Sed oportet addere antecedenti quod illa non foret pertinens ad inferendum se ipsam non significare sicut est. Et si illud addatur, illud est negandum. Nam sequitur immediate “Illa non significat sicut est; ergo, illa non significat sicut est”. | (108) Solution: ‘This does not signify as it is’ should be granted, and it should be granted that it is the case that it does not signify as it is, and it should be granted that it principally signifies in this way. And the inference, “therefore, it is as it principally signifies” should be denied. But it is necessary to add to the premise that it is not relevant to inferring itself not to signify as it is. And if that is added, it should be denied. For it follows directly, this does not signify as it is, therefore, it does not signify as it is. |
(109) Simile est si ponatur illa ‘Non est ita sicut illa propositio principaliter significat’ et quod illa principaliter sic significet, scilicet, quod non est ita sicut illa principaliter significat, et quod per ly ‘ista’ demonstretur illa eadem. Hoc posito, concedenda est illa ‘Non est ita sicut illa principaliter significat’. Et dicendum quod illa non significat sicut est nec aliter quam est, ut in priori sophismate. | (109) It is similar if ‘It is not as this proposition principally signifies’ is proposed and that it principally signifies in that way, namely, that it is not as this proposition principally signifies, and that ‘this’ refers to the very same ⟨proposition⟩. Supposing this, ‘It is not as this proposition principally signifies’ should be granted, and it should be said that it does not signify as it is nor other than it is, as in the previous sophism. |
(110) (V*12va) Simile est si ponatur quod tantum illa propositio sit ‘Falsum est’ et quod illa praecise significet quod falsum est et quod quaelibet propositio quae significat sicut est sit vera. Deinde proponitur [220] ‘Falsum est’. Si conceditur vel dubitatur, contra: Sequitur “Falsum est; et omnis propositio est illa; igitur, illa est falsa”. Et sequitur: “ergo, illa significat aliter quam est”. Et ultra: ergo, non est ita sicut illa significat; et illa solum significat quod falsum est; ergo, non est ita quod falsum est. Et ultra: ergo, nullum falsum est. Et sic ex illa cum casu sequitur suum contradictorium. Si negatur ‘Falsum est’, contra: Illa propositio est; et non est vera; et significat sicut est vel aliter quam est; ergo, illa est falsa. Et ultra: ergo, falsum est. | (110) It is similar if it is supposed that the only proposition is ‘A falsehood exists’ and that it only signifies that a falsehood exists and that every proposition which signifies as it is is true. Then ‘A falsehood exists’ is proposed. If it is granted or doubted, on the contrary: it follows: a falsehood exists, and it is every proposition, therefore, it is false. And it follows, therefore, it signifies other than it is. Accordingly, it is not as it signifies, and it only signifies that a falsehood exists, therefore, it is not the case that a falsehood exists. Accordingly, no falsehood exists. And thus from it together with the scenario its contradictory follows. If ‘A falsehood exists’ is denied, on the contrary: this proposition exists, and it is not true, and it signifies as it is or other than it is, therefore, it is false. Accordingly, a falsehood exists. |
(111) Solutio: Admittendus est casus et negandum est ‘Falsum est’. Et concedendum est quod illa propositio est et quod illa non est vera. Et tunc negandum est quod ista significet sicut est vel aliter quam est eo quod illa est pertinens ad inferendum se ipsam non significare sicut est. Nam sequitur: Falsum est; et omnis propositio est illa ‘Falsum est’; ergo, illa est falsa. Et ultra: ergo, significat aliter quam est. Et ultra: ergo, illa non significat sicut est. Et per consequens illa non significat sicut est nec aliter quam est illo casu posito. Si tamen ponatur ille casus quod illa propositio sit ‘Falsum est’ et nulla alia et quod illa principaliter significct quod falsum est et quod omnis propositio significans sicut est sit vera et quod omnis propositio signiflcat sicut est vel aliter quam est, tunc ille casus non est admittendus eo quod includit quod eadem propositio sit vera et falsa, quod non est possibile. | (111) Solution: the scenario should be admitted and ‘A falsehood exists’ should be denied. And it should be granted that the proposition exists and that it is not true. And then it should be denied that it signifies as it is or other than it is, in that it is relevant to inferring itself not to signify as it is. For it follows, a falsehood exists, and the only proposition is ‘A falsehood exists’, therefore, it is false. Accordingly, it signifies other than it is, and so it does not signify as it is, and in consequence, it does not signify as it is nor other than it is in the scenario proposed. But if the scenario is proposed that there is the proposition ‘A falsehood exists’ and no other and that it principally signifies that a falsehood exists and that every proposition signifying as it is is true and that every proposition signifies as it is or other than it is, then the scenario should not be admitted in that it entails that the same proposition is true and false, which is not possible. |
(112) Et haec de insolubilibus dicta sufficiant. Sed si qui contra pertractata instare volunt non vocibus more protervientium sed sententiae repugnent. In istis autem si quid completum sive veritati consonum repertum fuerit, ex dictis Aristotelis et aliorum reverendorum magistrorum colligitur. Si quid diminutum aut veritati dissonum inveniatur, soli meae insufficientiae est impugnandum. Amen. [178] | (112) These comments on insolubles suffice. But if people want to object to the above discussion, they should not take issue with the words, as people do when they are being obstinate, but with the content. But if in these ⟨remarks⟩ what is perfect or consonant with truth was found, it was gathered from the sayings of Aristotle and of other revered masters. If what was less or dissonant with the truth was found, its insufficiency should be impugned only to me. So be it. |
Notes
- ↑ Paul Vincent Spade, ‘Roger Swyneshed’s Insolubilia: edition and comments’, Archives d’histoire doctrinale et littéraire de moyen âge 46 (1979), 177-220 (reprinted in idem, Lies, Language and Logic in the Late Middle Ages (London 1988). References to Spade are to this edition, unless otherwise stated. The Latin text (with Italian translation) is also printed, with some passages omitted, in L. Pozzi, Il Mentitore e il Medioevo (Parma 1987), 180-99. For biographical details on Swyneshed, see, e.g., J. Weisheipl, “Roger Swyneshed OSB, Logician, Natural Philosopher, and Theologian,” in Studies Presented to Daniel Callus (Oxford 1964), 231-252.
- ↑ Added in ms V* alone (V* is Spade designation for BAV vat.lat.2154): ‘that is, which is neither true nor false’. Cf. §28.
- ↑ Spade suggests (n.35) translating ‘cum totaliter sic esse sicut est’ as ‘with some additional premise’. But this lacks the factivity of the original. In ‘Roger Swyneshed’s theory of insolubilia’, in History of Semiotics, ed.A.Eschbach and J.Trabant (Amsterdam 1983), p.108 (also reprinted in Lies, Language and Logic), he translates is as ‘with the case’s being altogether as it is’. Pozzi (pp.185, 187) renders it in Italian as ‘dall’essere del tutto così come è’.
- ↑ See §§28-32 and 89-99.
- ↑ Spade’s edition reads ‘actualiter’ (actually) in §§11-12, preferring the reading in V* over that in C (artificialiter) and V (accidentaliter). But in ‘Roger Swyneshed’s theory of insolubilia’ (p.106 and n.12),he opts for ‘artificially’. Pozzi (Il Mentitore e il Medioevo, p.182), agrees.
- ↑ Pozzi (p.182) adds ‘non’ before ‘creditam’.
- ↑ Spade (‘Roger Swyneshed’s theory of insolubilia’, p.108 and n.25) claims that one needs to add theproviso here that the proposition signifies either as it is or other than it is. But see §99: a propositionlike ‘This proposition signifies other than it is’ is not relevant to inferring itself to be false, and so doesnot falsify itself, even though it directly follows that it is false—but only with the added premise that itsignifies either as it is or other than it is.
- ↑ Metaphysics Γ, 1012b13-14.
- ↑ Spade refers to Metaphysics Z, 1041b12-20.
- ↑ See §2 and footnote 1.
- ↑ Spade refers to Categories 4, 2a6-7: “Each positive or negative statement must either be true or befalse” (Loeb trans.).
- ↑ Spade refers to Categories 5, 4b8-10: “For it is by the facts of the case, by their being or not being so,that a statement is called true or false” (Loeb trans.).
- ↑ Swyneshed’s first thesis (§25).
- ↑ Spade refers to Metaphysics Γ 8, 1012b13-15.
- ↑ Spade suggests this is a response to the objection in §41.
- ↑ Spade suggests this is a response to the objection in §42.
- ↑ Spade refers to 180b1-7.
- ↑ Spade refers to 180a39-b1, and suggests (n.97) correcting the text, in which Pozzi (p.192) follows him.
- ↑ ‘bene’ is added by Pozzi (p.192).
- ↑ Spade refers to 180b5-7.
- ↑ Actually what was inferred was “accordingly, it is not as B signifies”.
- ↑ See, e.g., Strode, Logica, cited in Maierù, Terminologia logica della tarda scolastica, p.490 n.2:“dicere solemus acceptiones terminorum primarium significationem vel impositionem eorum vel vimvocis, virtutem sermonis, vel usum vel modum loquendi.”
- ↑ Following mss C and V (Spade’s designation for Cambridge UL 244 (245) and BAV vat.lat.2130respectively.
- ↑ Pozzi (p.194) amends the text to read ‘concedendum est quod Sortes est aeger’.
- ↑ Pozzi (p.196) amends the text to read ‘concedendum est quod Sortes est albus’.19granted that Socrates is running,26 and it should be granted that ⟨‘Socrates is running’⟩ isfalse because it falsifies itself, and it is just as in the previous sophism.
- ↑ Pozzi (p.196) amends the text to read ‘concedendum est quod Sortes est currens’.
- ↑ Following ms C in reading ‘positio’ instead of ‘propositio’, as in Spade’s text. Cf. §89, whereSwyneshed’s aim is to consider arguments showing that his opinion is impossible. Nowhere in §92 is itshown that ‘No truth exists’, or any other proposition is impossible.
- ↑ The argument is puzzling. See Spade’s comments (p.214 n.85).
- ↑ An example of Kilvington’s disputational meta-argument, so called by N.Kretzmann in TheSophismata of Richard Kilvington, ed. and tr. B. and N. Kretzmann (Cambridge 1990), p.316. Seefurther, n.30 below.
- ↑ Following ms C. Note that Swyneshed is here rejecting the disputational meta-argument, althoughone might expect him to endorse it.
- ↑ Spade (n.32) identifies these as: ‘A is one of them’ and ‘Each of them is known’ respectively.
- ↑ or as it is, for that matter.