Authors/Thomas Aquinas/perihermenias/perihermenias II/L3
From The Logic Museum
< Authors | Thomas Aquinas | perihermenias | perihermenias II
Jump to navigationJump to searchLECTURE 3
Latin | English |
---|---|
Cajetanus lib. 2 l. 3 n. 1 Postquam philosophus distinxit enunciationes in quibus subiicitur nomen infinitum non universaliter sumptum, hic intendit distinguere enunciationes, in quibus subiicitur nomen finitum universaliter sumptum. Et circa hoc tria facit: primo, ponit similitudinem istarum enunciationum ad infinitas supra positas; secundo, ostendit dissimilitudinem earumdem; ibi: sed non similiter etc.; tertio, concludit numerum oppositionum inter dictas enunciationes; ibi: hae duae igitur et cetera. Dicit ergo primo quod similes sunt enunciationes, in quibus est nominis universaliter sumpti affirmatio. | 1. Having distinguished enunciations in which the subject is an infinite name not taken universally, Aristotle now distinguishes enunciations in which the subject is a finite name taken universally. He first proposes a similarity between these enunciations and the infinite enunciations already discussed, and then shows their difference where he says, But it is not possible, in the same way as in the former case, that those on the diagonal both be true, etc. Finally, he concludes with the number of oppositions there are between these enunciations where he says, These two pairs, then, are opposed, etc. He says first, then, that enunciations in which the affirmation is of a name taken universally are similar to those already discussed. |
Cajetanus lib. 2 l. 3 n. 2 Quoad primum notandum est quod in enunciationibus indefinitis supra positis erant duae oppositiones et quatuor enunciationes, et affirmativae inferebant negativas, et non inferebantur ab eis, ut patet tam in expositione Ammonii, quam Porphyrii. Ita in enunciationibus in quibus subiicitur nomen finitum universaliter sumptum inveniuntur duae oppositiones et quatuor enunciationes: et affirmativae inferunt negativas et non e contra. Unde similiter se habent enunciationes supradictae, si nominis in subiecto sumpti fiat affirmatio universaliter. Fient enim tunc quatuor enunciationes: duae de praedicato finito, scilicet omnis homo est iustus, et eius negatio quae est non omnis homo est iustus; et duae de praedicato infinito, scilicet omnis homo est non iustus, et eius negatio quae est, non omnis homo est non iustus. Et quia quaelibet affirmatio cum sua negatione unam integrat oppositionem, duae efficiuntur oppositiones, sicut et de indefinitis dictum est. Nec obstat quod de enunciationibus universalibus loquens particulares inseruit; quoniam sicut supra de indefinitis et suis negationibus sermonem fecit, ita nunc de affirmationibus universalibus sermonem faciens de earum negationibus est coactus loqui. Negatio siquidem universalis affirmativae non est universalis negativa, sed particularis negativa, ut in I libro habitum est. | 2. It is to be noted in relation to Aristotle’s first point that in indefinite enunciations there were two oppositions and four enunciations, the affirmatives inferring the negatives and not being inferred by them, as is clear in the exposition of Ammonius as well as of Porphyry. In enunciations in which the finite name universally taken is the subject there are also two oppositions and four eminciations, the affirmatives inferring the negatives and not the contrary. Hence, enunciations are related in a similar way if the affirmation is made universally of the name taken as the subject. For again, four enunciations will be made, two with a finite predicate-"Every man is just,” and its negation, "Not every man is just”-and two with an infinite predicate-"Every man is non-just” and its negation, "Not every man is non-just.” And since any affirmation together with its negation makes one whole opposition, two oppositions are made, as was also said of indefinite enunciations. There might seem to be an objection to his use of particulars when speaking of universal enunciations, but this cannot be objected to, for just as in dealing with indefinite enunciations he spoke of their negations, so now in dealing with universal affirmatives be is forced to speak of their negations. The negation of the universal affirmative, however, is not the do universal but the particular negative as was stated in the first book. |
Cajetanus lib. 2 l. 3 n. 3 Quod autem similis sit consequentia in istis et supradictis indefinitis patet exemplariter. Et ne multa loquendo res clara prolixitate obtenebretur, formetur primo figura de indefinitis, quae supra posita est in expositione Porphyrii, scilicet ex una parte ponatur affirmativa finita, et sub ea negativa infinita, et sub ista negativa privativa. Ex altera parte primo negativa finita, et sub ea affirmativa infinita, et sub ea affirmativa privativa. Deinde sub illa figura formetur alia figura similis illi universaliter: ponatur scilicet ex una parte universalis affirmativa de praedicato finito, et sub ea particularis negativa de praedicato infinito, et ad complementum similitudinis sub ista particularis negativa de praedicato privativo; ex altera vero parte ponatur primo particularis negativa de praedicato infinito, et sub ea universalis affirmativa de praedicato finito, et sub ista universalis affirmativa de praedicato privativo, hoc modo: (Figura). Quibus ita dispositis, exerceatur consequentia semper in ista proxima figura, sicut supra in indefinitis exercita est: sive sequendo expositionem Ammonii, ut infinitae se habeant ad finitas, sicut privativae se habent ad ipsas finitas; finitae autem non se habeant ad infinitas medias, sicut privativae se habent ad ipsas infinitas: sive sectando expositionem Porphyrii, ut affirmativae inferant negativas, et non e contra. Utrique enim expositioni suprascriptae deserviunt figurae, ut patet diligenter indaganti. Similiter ergo se habent enunciationes istae universales ad indefinitas in tribus, scilicet in numero propositionum, et numero oppositionum, et modo consequentiae. | 3. A table will make it evident that the consequence is similar in these and in indefinite eminciations. And lest what is clear be made obscure by prolixity let us first make a diagram of the indefinites posited in the last lesson, based upon the exposition of Porphyry. Place the finite affirmative on one side and under it the infinite negative, and under this the privative negative. On the other side put the finite negative first, under it the infinite affirmative, and under this the privative affirmative. Then under this diagram make another similar to it but of universals. On one side put the universal affirmative of the finite predicate, under it the particular negative of the infinite predicate, and to complete the parallel put the particular negative of the privative predicate under this. On the other side, first put the particular negative of the infinite predicate, under it the universal affirmative of the finite predicate,” and under this the universal affirmative of the privative predicate. Thus: DIAGRAM OF THE INDEFINITES Man is just Man is not just Man is not non-just Man is non-just Man is not unjust Man is unjust DIAGRAM OF THE UNIVERSALS Every man is just Not every man is just. Not every man is non-just Every man is non-just Not every man is unjust Every man is unjust In this disposition of enunciations, the consequence always follows in the second diagram just as it followed in regard to indefinites in the first diagram. This is true if we follow the exposition of Ammonius in which infinites are related to finites as privatives are related to the same finites, and the finites not related to the infinite middle enunciatious as privatives are related to those infinites. It is equally true if we follow the exposition of Porphyry, in which affirmatives infer negatives and not vice versa. That the tables serve both expositions will be clear to one studying them. These universal enunciations, therefore, are related in like manner to indefinite entinciations in three things: the number of propositions, the number of oppositions, and the mode of consequence. |
Cajetanus lib. 2 l. 3 n. 4 Deinde cum dicit: sed non similiter angulares etc., ponit dissimilitudinem inter istas universales et supradictas indefinitas, in hoc quod angulares non similiter contingit veras esse. Quae verba primo exponenda sunt secundum eam, quam credimus esse ad mentem Aristotelis, expositionem; deinde secundum alios. Angulares enunciationes in utraque figura suprascripta vocat eas quae sunt diametraliter oppositae, scilicet affirmativam finitam ex uno angulo, et affirmativam infinitam sive privativam ex alio angulo: et similiter negativam finitam ex uno angulo, et negativam infinitam vel privativam ex alio angulo. | 4. When he says, But it is not possible, in the same way as in the former case, that those on the diagonal both be true, etc., he proposes a difference between the universals and the indefinites, i.e., that it is not possible for the diagonals to be true in the case of universals. First we will explain these words according to the exposition we believe Aristotle had in mind, then according to the opinion of others. Aristotle means by diagonal eminciations those that are diametrically opposed in the diagram above, i.e., the finite affirmative in one corner and the infinite affirmative or the privative in the other; and the finite negative in one corner and the, infinite negative or privative in the other. |
Cajetanus lib. 2 l. 3 n. 5 Enunciationes ergo in qualitate similes angulares vocatae, eo quod angulares, idest diametraliter distant, dissimilis veritatis sunt apud indefinitas et universales. Angulares enim indefinitae tam in diametro affirmationum, quam in diametro negationum possunt esse simul verae, ut patet in suprascripta figura indefinitarum. Et hoc intellige in materia contingenti. Angulares vero in figura universalium non sic se habent, quoniam angulares secundum diametrum affirmationum impossibile est esse simul veras in quacumque materia. Angulares autem secundum diametrum negationum quandoque possunt esse simul verae, quando scilicet fiunt in materia contingenti: in materia enim necessaria et remota impossibile est esse ambas veras. Haec est Boethii, quam veram credimus, expositio. | 5. Enunciations that are similar in quality, and called diagonal because diametrically distant, are dissimilar in truth, tben, in the case of indefinites and universals. The indefinites on the corners, both oil the diagonal of affirmations and the diagonal of negations can be simultaneously true, as is evident in the table of the indefinite entinciations. This is to be understood in regard to contingent matter. But diagonals of universals are not so related, for angtilars on the diagonal of affirmations cannot be simultaneously true in any matter. Those on the diagonal of negations, however, can sometimes be true simultaneously, i.e., when they are in contingerlt matter. In necessary and rernote matter it is impossible for both of these to be true. This is the exposition of Boethitis, which we believe to be the true one. |
Cajetanus lib. 2 l. 3 n. 6 Herminus autem, Boethio referente, aliter exponit. Licet enim ponat similitudinem inter universales et indefinitas quoad numerum enunciationum et oppositionum, oppositiones tamen aliter accipit in universalibus et aliter in indefinitis. Oppositiones siquidem indefinitarum numerat sicut et nos numeravimus, alteram scilicet inter finitas affirmativam et negativam, et alteram inter infinitas affirmativam et negativam, quemadmodum nos fecimus. Universalium vero non sic numerat oppositiones, sed alteram sumit inter universalem affirmativam finitam et particularem negativam finitam, scilicet omnis homo est iustus, non omnis homo est iustus, et alteram inter eamdem universalem affirmativam finitam et universalem affirmativam infinitam, scilicet omnis homo est iustus, omnis homo est non iustus. Inter has enim est contrarietas, inter illas vero contradictio. Dissimilitudinem etiam universalium ad indefinitas aliter ponit. Non enim nobiscum fundat dissimilitudinem inter angulares universalium et indefinitarum supra differentiam quae est inter angulares universalium affirmativas et negativas, sed supra differentiam quae est inter ipsas universalium angulares inter se ex utraque parte. Format namque talem figuram, in qua ex una parte sub universali affirmativa finita, universalis affirmativa infinita est; et ex alia parte sub particulari negativa finita, particularis negativa infinita ponitur; sicque angulares sunt disparis qualitatis, et similiter indefinitarum figuram format hoc modo: (Figura). Quibus ita dispositis, ait in hoc stare dissimilitudinem, quod angulares indefinitarum mutuo se invicem compellunt ad veritatis sequelam, ita quod unius angularis veritas suae angularis veritatem infert undecumque incipias. Universalium vero angulares non se mutuo compellunt ad veritatem, sed ex altera parte necessitas deficit illationis. Si enim incipias ab aliquo universalium et ad suam angularem procedas, veritas universalis non ita potest esse simul cum veritate angularis, quod compellit eam ad veritatem: quia si universalis est vera, sua universalis contraria erit falsa: non enim possunt esse simul verae. Et si ista universalis contraria est falsa, sua contradictoria particularis, quae est angularis primae universalis assumptae, erit necessario vera: impossibile est enim contradictorias esse simul falsas. Si autem incipias e converso ab aliqua particularium et ad suam angularem procedas, veritas particularis ita potest stare cum veritate suae angularis, quod tamen non necessario infert eius veritatem: quia licet sequatur: particularis est vera; ergo sua universalis contradictoria est falsa; non tamen sequitur ultra: ista universalis contradictoria est falsa; ergo sua universalis contraria, quae est angularis particularis assumpti, est vera. Possunt enim contrariae esse simul falsae. | 6. Herminus, however, according to Boethius, explains this in another way. He takes the oppositions in one way in universals and in another in indefinites, although he holds that there is a likeness between universals and indefinites with respect to the n timber of enunciations and of oppositions. He arrives at the oppositions of indefinites we have, i.e., one between the affirmative and negative finites, and the other between the affirmative and negative infinites. But he disposes the oppositions of universals in another way, taking one between the finite universal affirmative and finite particular negative, "Every man is just” and "Not every man is just,” and the other between the same finite universal affirmative and the infinite universal affirmative, "Every man is just” and "Every man is non-just.” Between the latter there is contrariety, between the former contradiction. He also proposes the dissimilarity between universals and indefinites in another way. He does not base the dissimilarity between diagonals of universals and indefinites on the difference between affirinative and negative diagonals of universals, as we do, but on the difference between the diagonals of universals on both sides among themselves. Hence he forms his diagram in this way: under the finite universal affirmative be places the infinite universal affirmative, and on the other side, under the finite particular negative the infinite particular negative. Thus the diagonals are of different quality. He also diagrams the indefinites in this way. Every man is just ? contradictories ? Not every man is just contraries subcontraries Every man is non-just ? contradictories ? Not every man is non-just Man is just Man is non-just Man is not just Man is not non-just With enunciations disposed in this way he says their difference is this: that in indefinite enunciations, one on the diagonal is true as a necessary consequence of the truth of the other, so that the truth of one enunciation infers the truth of its diagonal from wherever you begin * But there is no such mutual necessary consequence in universals—from the truth of one on a diagonal to the other—since the necessity of inference fails in part. If you begin from any of the universals and proceed to its diagonal, the truth of the universal cannot be simultaneous with the truth of its diagonal so as to compel it to truth. For if the universal is true its universal contrary will be false, since they cannot be at once true; and if this universal contrary is false, its particular contradictory, which is the diagonal of the first universal assumed, will necessarily be true, since it is impossible for contradictories to be at once false; but if, conversely, you begin with a particular enunciation and proceed to its diagonal, the truth of the particular can so stand with the truth of its diagonal that it does not infer its truth necessarily. For this follows: the particular is true, therefore its universal contradictory is false. But this does not follow: this universal contradictory is false, therefore its universal contrary, which is the diagonal of the particular assumed, is true. For contraries can be at once false. |
Cajetanus lib. 2 l. 3 n. 7 Sed videtur expositio ista deficere ab Aristotelis mente quoad modum sumendi oppositiones. Non enim intendit hic loqui de oppositione quae est inter finitas et infinitas, sed de ea quae est inter finitas inter se, et infinitas inter se. Si enim de utroque modo oppositionis exponere volumus, iam non duas, sed tres oppositiones inveniemus: primam inter finitas, secundam inter infinitas, tertiam quam ipse herminus dixit inter finitam et infinitam. Figura etiam quam formavit, conformis non est ei, quam Aristoteles in fine I priorum formavit, ad quam nos remisit, cum dixit: haec igitur quemadmodum in resolutoriis dictum est, sic sunt disposita. In Aristotelis namque figura, angulares sunt affirmativae affirmativis, et negativae negativis. | 7. But the way in which oppositions are taken in this exposition does not seem to be what Aristotle had in mind. He did not intend to speak here of the opposition between finites and infinites, but of the opposition between finites themselves and infinites themselves. For if we meant to explain each mode of opposition, there would not be two but three oppositions: first, between finites; second, between infinites; and third, the one Herminus states between finite and infinite. Even the diagram Herminus makes is not like the one Aristotle makes at the end of I Priorum, to which Aristotle himself referred us in the last lesson when he said, This, then, is the way these are arranged, as we have said in the Analytics; for in Aristotle’s diagram affirmatives are diagonal to affirmatives and negatives to negatives. |
Cajetanus lib. 2 l. 3 n. 8 Deinde cum dicit: hae igitur duae etc., concludit numerum propositionum. Et potest dupliciter exponi; primo, ut ly hae demonstret universales, et sic est sensus, quod hae universales finitae et infinitae habent duas oppositiones, quas supra declaravimus; secundo, potest exponi ut ly hae demonstret enunciationes finitas et infinitas quoad praedicatum sive universales sive indefinitas, et tunc est sensus, quod hae enunciationes supradictae habent duas oppositiones, alteram inter affirmationem finitam et eius negationem, alteram inter affirmationem infinitam et eius negationem. Placet autem mihi magis secunda expositio, quoniam brevitas cui Aristoteles studebat, replicationem non exigebat, sed potius quia enunciationes finitas et infinitas quoad praedicatum secundum diversas quantitates enumeraverat, ad duas oppositiones omnes reducere, terminando earum tractatum, voluit. | 8. Then Aristotle says, These two pairs, then, are opposed, etc. Here he concludes to the number of propositions. What he says here can be interpreted in two ways. In the first way, "these” designates universals, and thus the meaning is that the finite and infinite universals have two oppositions, which we have explained above. In the second, "these” designates enunciations which are finite and infinite with respect to the predicate, whether universal or indefinite, and then the meaning is that these enunciations have two oppositions, one between the finite affirmation and its negation and the other between the infinite affirmation and its negation. The second exposition seems more satisfactory to me, for the brevity for which, Aristotle strove allows for no repetition; hence, in terminating his treatment of the enunciations he had enumerated—those with a finite and infinite predicate according to diverse quantities—he meant to reduce all the oppositions to two. |
Cajetanus lib. 2 l. 3 n. 9 Deinde cum dicit: aliae autem ad id quod est etc., intendit declarare diversitatem enunciationum de tertio adiacente, in quibus subiicitur nomen infinitum. Et circa hoc tria facit: primo, proponit et distinguit eas; secundo, ostendit quod non dantur plures supradictis; ibi: magis autem etc.; tertio, ostendit habitudinem istarum ad alias; ibi: hae autem extra et cetera. Ad evidentiam primi advertendum est tres esse species enunciationum de inesse, in quibus explicite ponitur hoc verbum est. Quaedam sunt, quae subiecto sive finito sive infinito nihil habent additum ultra verbum, ut, homo est, non homo est. Quaedam vero sunt quae subiecto finito habent, praeter verbum, aliquid additum sive finitum sive infinitum, ut, homo est iustus, homo est non iustus. Quaedam autem sunt quae subiecto infinito, praeter verbum, habent aliquid additum sive finitum sive infinitum, ut, non homo est iustus, non homo est non iustus. Et quia de primis iam determinatum est, ideo de ultimis tractare volens, ait: aliae autem sunt, quae habent aliquid, scilicet praedicatum, additum supra verbum est, ad id quod est, non homo, quasi ad subiectum, idest ad subiectum infinitum. Dixit autem quasi, quia sicut nomen infinitum deficit a ratione nominis, ita deficit a ratione subiecti. Significatum siquidem nominis infiniti non proprie substernitur compositioni cum praedicato quam importat, est, tertium adiacens. Enumerat quoque quatuor enunciationes et duas oppositiones in hoc ordine, sicut in superioribus fecit. Distinguit etiam istas ex finitate vel infinitate praedicata. Unde primo, ponit oppositiones inter affirmativam et negativam habentes subiectum infinitum et praedicatum finitum, dicens: ut, non homo est iustus, non homo non est iustus. Secundo, ponit oppositionem alteram inter affirmativam et negativam, habentes subiectum infinitum et praedicatum infinitum, dicens: ut, non homo est non iustus, non homo non est non iustus. | 9. When he says, and there, are two other pairs if something is added to "non-man” as a subject, etc., he shows the diversity of enunciations when "is” is added as a third element and the subject is an infinite name. First, he proposes and distinguishes them; secondly, he shows that there are no more opposites than these where he says, There will be no more opposites than these; thirdly, he shows the relationship of these to the others where he says, The latter, however, are separate from the former and distinct from them, etc. With respect to the first point, it should be noted that there are three species of absolute [de inesse] enunciations in which the verb "is” is posited explicitly. Some have nothing added to the subject—which can be either finite or infinite—beyond the verb, as in "Man is,” "Non-man is.” Some have, besides the verb, something either finite or infinite added to a finite subject, as in "Man is just,” "Man is non-just.” Finally, some have, besides the verb, something either finite or infinite added to an infinite subject, as in "Non-man is just,” "Non-man is non-just.” He has already treated the first two and now intends to take tip the last ones. And there are two other pairs, he says, that have something, namely a predicate. added beside the verb "is” to "non-man” as if to a subject, i.e., to an infinite subject. He says "as if” because the infinite name falls short of the notion of a subject insofar as it falls short of the notion of a name. Indeed, the signification of an infinite name is not properly submitted to composition with the predicate, which "is,” the third element added, introduces. Aristotle enumerates four enunciations and two oppositions in this order as he did in the former. In addition he distinguishes these from the former finiteness and infinity. First, he posits the opposition between affirmative and negative enunciations with an infinite subject and a finite predicate, "Non-man is just,” "Non-man is not just.” Then he posits another opposition between those with an infinite subject and an infinite predicate, "Non-man is non-just,” "Non-man is not non-just. |
Cajetanus lib. 2 l. 3 n. 10 Deinde cum dicit: magis autem plures etc., ostendit quod non dantur plures oppositiones enunciationum supradictis. Ubi notandum est quod enunciationes de inesse, in quibus explicite ponitur hoc verbum est, sive secundum, sive tertium adiacens, de quibus loquimur, non possunt esse plures quam duodecim supra positae; et consequenter oppositiones earum secundum affirmationem et negationem non sunt nisi sex. Cum enim in tres ordines divisae sint enunciationes, scilicet in illas de secundo adiacente, in illas de tertio subiecti finiti, et in illas de tertio subiecti infiniti, et in quolibet ordine sint quatuor enunciationes; fiunt omnes enunciationes duodecim, et oppositiones sex. Et quoniam subiectum earum in quolibet ordine potest quadrupliciter quantificari, scilicet universalitate, particularitate, et singularitate et indefinitione; ideo istae duodecim multiplicantur in quadraginta octo. Quater enim duodecim quadraginta octo faciunt. Nec possibile est plures his imaginari. Et licet Aristoteles nonnisi viginti harum expresserit, octo in primo ordine, octo in secundo, et quatuor in tertio, attamen per eas reliquas voluit intelligi. Sunt autem sic enumerandae et ordinandae secundum singulos ordines, ut affirmationi negatio prima ex opposito situetur, ut oppositionis intentum clarius videatur. Et sic contra universalem affirmativam non est ordinanda universalis negativa, sed particularis negativa, quae est illius negatio; et e converso, contra particularem affirmativam non est ordinanda particularis negativa, sed universalis negativa quae est eius negatio. Ad clarius autem intuendum numerum, coordinandae sunt omnes, quae sunt similis quantitatis, simul in recta linea, distinctis tamen ordinibus tribus supradictis. Quod ut clarius elucescat, in hac subscripta videatur figura: (Figura). Quod autem plures his non sint, ex eo patet quod non contingit pluribus modis variari subiectum et praedicatum penes finitum et infinitum, nec pluribus modis variantur finitum et infinitum subiectum. Nulla enim enunciatio de secundo adiacente potest variari penes praedicatum finitum vel infinitum, sed tantum penes subiectum quod sufficienter factum apparet. Enunciationes autem de tertio adiacente quadrupliciter variari possunt, quia aut sunt subiecti et praedicati finiti, aut utriusque infiniti, aut subiecti finiti et praedicati infiniti, aut subiecti infiniti et praedicati finiti. Quarum nullam praetermissam esse superior docet figura. | 10. Then he says, There will be no more opposites than these. Here he points out that there are no more oppositions of enunciations than the ones be has already given. We should note, then, that simple [or absolute] enunciations—of which we have been speaking—in which the verb "is” is explicitly posited whether it is the second or third element added, cannot be more than the twelve posited. Consequently, their oppositions according to affirmation and negation are only six. For enunciations are divided into three orders: those with the second element added, those with the third element added to a finite subject, and those with the third element added to an infinite subject; and in any order there are four enunciations. And since their subject in any order can be quantified in four ways, i.e., by universality, particularity, singularity, and indefiniteness, these twelve will be increased to fortyeight (four twelves being forty-eight). Nor is it possible to imagine more than these. Aristotle has only expressed twenty of these, eight in the first order, eight in the second, and four in the third, but through them be intended the rest to be understood. They are to be enumerated and disposed according to each order so that the primary negation is placed opposite an affirmation in order to make the relation of opposition more evident. Thus, the universal negative should not be ordered as opposite to the universal affirmative, but the particular negative, which is its negation. Conversely, the particular negative should not be ordered as opposite to the particular affirmative, but the universal negative, which is its negation. For a clearer look at their number all those of similar quantity should be co-ordered in a straight line and in the three distinct orders given above. The following diagram will make this clear. FIRST ORDER Socrates is Socrates is not Non-Socrates is Non-Socrates is not Some man is Some man is not Some non-man is Some non-man is not Man is Man is not Non-man is Non-man is not Every man is No man is Every non-man is No non-man is SECOND ORDER Socrates is just Socrates is not just Socrates is non-just Socrates is not non-just Some man is just Some man is not just Some man is non-just Some man is not non-just Man is just Man is not just Man is non-just Man is not non-just Every man is just No man is just Every man is non-just No man is non-just THIRD ORDER Non-Socrates is just Non-Socrates is not just Non-Socrates is non-just Non-Socrates is not non-just Some non-man is just Some non-man is not just Some non-man is non-just Some non-man is not non-just Non-man is just Non-man is not just Non-man is non-just Non-man is not non-just Every non-man is just No non-man is just Every non-man is non-just No non-man is non-just It is evident that there are no more than these, for the subject and the predicate cannot be varied in any other way with respect to finite and infinite. Nor can the finite and infinite subject be varied in any other way, for the enunciation with a second adjoining element cannot be varied with a finite and infinite predicate but only in respect to the subject. This is clear enough. But enunciations with a third adjoining element can be varied in four ways: they may have either a finite subject and predicate, or an infinite subject and predicate, or a finite subject and infinite predicate, or an infinite subject and finite predicate. These variations are all evident in the above table. |
Cajetanus lib. 2 l. 3 n. 11 Deinde cum dicit: hae autem extra illas etc., ostendit habitudinem harum quas in tertio ordine numeravimus ad illas, quae in secundo sitae sunt ordine, et dicit quod istae sunt extra illas, quia non sequuntur ad illas, nec e converso. Et rationem assignans subdit: ut nomine utentes eo quod est non homo, idest ideo istae sunt extra illas, quia istae utuntur nomine infinito loco nominis, dum omnes habent subiectum infinitum. Notanter autem dixit enunciationes subiecti infiniti uti ut nomine, infinito nomine, quia cum subiici in enunciatione proprium sit nominis, praedicari autem commune nomini et verbo, omne subiectum enunciationis ut nomen subiicitur. | 11. Then when he says, The latter, however, are separate from the former and distinct from them, etc., he shows the relationship of those we have put in the third order to those in the second order. The former, he says, are distinct from the latter because they do not follow upon the latter, nor conversely. He assigns the reason when he adds: because of the use of "non-man” as a name, i.e., the former are separate from the latter because the former use an infinite name in place of a name, since they all have an infinite subject. It should be noted that he says enunciations of an infinite subject use an infinite name as a name; for to be subjected in an enunciation is proper to a name, to be predicated common to a name and a verb, and therefore every subject of an enunciation is subjected as a name. |
Cajetanus lib. 2 l. 3 n. 12 Deinde cum dicit: in his vero in quibus est etc., determinat de enunciationibus in quibus ponuntur verba adiectiva. Et circa hoc tria facit: primo, distinguit eas; secundo, respondet cuidam tacitae quaestioni; ibi: non enim dicendum est etc.; tertio, concludit earum conditiones; ibi: ergo et caetera eadem et cetera. Ad evidentiam primi resumendum est, quod inter enunciationes in quibus ponitur est secundum adiacens, et eas in quibus ponitur est tertium adiacens talis est differentia quod in illis, quae sunt de secundo adiacente, simpliciter fiunt oppositiones, scilicet ex parte subiecti tantum variati per finitum et infinitum; in his vero, quae habent est tertium adiacens dupliciter fiunt oppositiones, scilicet et ex parte praedicati et ex parte subiecti, quia utrumque variari potest per finitum et infinitum. Unde unum ordinem tantum enunciationum de secundo adiacente fecimus, habentem quatuor enunciationes diversimode quantificatas et duas oppositiones. Enunciationes autem de tertio adiacente oportuit partiri in duos ordines, quia sunt in eis quatuor oppositiones et octo enunciationes, ut supra dictum est. Considerandum quoque est quod enunciationes, in quibus ponuntur verba adiectiva, quoad significatum aequivalent enunciationibus de tertio adiacente, resoluto verbo adiectivo in proprium participium et est, quod semper fieri licet, quia in omni verbo adiectivo clauditur verbum substantivum. Unde idem significant ista, omnis homo currit, quod ista, omnis homo est currens. Propter quod Boethius vocat enunciationes cum verbo adiectivo de secundo adiacente secundum vocem, de tertio autem secundum potestatem, quia potest resolvi in tertium adiacens, cui aequivalet. Quoad numerum autem enunciationum et oppositionum, enunciationes verbi adiectivi formaliter sumptae non aequivalent illis de tertio adiacente, sed aequivalent enunciationibus, in quibus ponitur est secundum adiacens. Non possunt enim fieri oppositiones dupliciter in enunciationibus adiectivis, scilicet ex parte subiecti et praedicati, sicut fiebant in substantivis de tertio adiacente, quia verbum, quod praedicatur in adiectivis, infinitari non potest. Sed oppositiones adiectivarum fiunt simpliciter, scilicet ex parte subiecti tantum variati per infinitum et finitum diversimode quantificati, sicut fieri didicimus supra in enunciationibus substantivis de secundo adiacente, eadem ducti ratione, quia praeter verbum nulla est affirmatio vel negatio, sicut praeter nomen esse potest. Quia autem in praesenti tractatu non de significationibus, sed de numero enunciationum et oppositionum sermo intenditur, ideo Aristoteles determinat diversificandas esse enunciationes adiectivas secundum modum, quo distinctae sunt enunciationes in quibus ponitur est secundum adiacens. Et ait quod in his enunciationibus, in quibus non contingit poni hoc verbum est formaliter, sed aliquod aliud, ut, currit, vel, ambulat, idest in enunciationibus adiectivis, idem faciunt quoad numerum oppositionum et enunciationum sic posita, scilicet nomen et verbum, ac si est secundum adiacens subiecto nomini adderetur. Habent enim et istae adiectivae, sicut illae, in quibus ponitur est, duas oppositiones tantum, alteram inter finitas, ut, omnis homo currit, omnis homo non currit, alteram inter infinitas quoad subiectum, ut, omnis non homo currit, omnis non homo non currit. | 12. Next he takes up enunciations in which adjective verbs are posited, when he says, In enunciations in which "is” does not join the predicate to the subject, etc. First, he distinguishes these adjective verbs; secondly, he answers an implied question where he says, We must not say "non-every man,” etc.; thirdly, he concludes with their conditions where he says, All else in the enunciations in which "is” does not join the predicate to the subject will be the same, etc. It is necessary to note here that there is a difference between enunciations in which "is” is posited as a second adjoining element and those in which it is posited as a third element. In those with "is” as a second element oppositions are simple, i.e., varied only on the part of the subject by finite and infinite. In those having "is” as a third element oppositions are made in two ways—on the part of the predicate and on the part of the subject—for both can be varied by finite and infinite. Hence we made only one order of enunciations with "is” as the second element. It had four enunciations quantified in diverse ways, and two oppositions. But enunciations with "is” as a third element must be divided into two orders, because in them there are four oppositions and eight enunciations, as we said above. Enunciations with adjective verbs are made equivalent in signification to enunciations with "is” as the third element by resolving the adjective verb into its proper participle and "is,” which may always be done because a substantive verb is contained in every adjective verb. For example, "Every man runs” signifies the same thing as "Every man is running.” Because of this Boethius calls enunciations having an adjective verb "eminciations of the second adjoining element according to vocal sound, but of the third adjoining element according to power.” He designates them in this manner because they can be resolved into enunciations with a third adjoining element to which they are equivalent. With respect to the number and oppositions of enunciations, those with an adjective verb, formally taken, are not equivalent to those with a third adjoining element but to those in which "is” is posited as the second element. For oppositions cannot be made in two ways in adjectival enunciations as they are in the case of substantival enunciations with a third adjoining element, namely, on the part of the subject and predicate, because the verb which is predicated in adjectival enunciations cannot be made infinite. Hence oppositions of adjectival enunciations are made simply, i.e., only by the subject quantified in diverse ways being varied by finite and infinite, as was done above in substantival enunciations with a second adjoining element, and for the same reason, i.e., there can be no affirmation or negation without a verb but there can be without a name. Since the present treatment is not of significations but of the number of enunciations and oppositions, Aristotle determines that adjectival enunciations are to be diversified according to the mode in which enunciations with "is” as the second adjoining element are distinguished. And he says that in enunciations in which the verb "is” is not posited formally, but some other verb, such as "matures” or "walks,” i.e., in adjectival enunciations, the name and verb form the same scheme with respect to the number of oppositions and enunciations as when is as a second adjoining element is added to the name as a subject. For these adjectival enunciations, like the ones in which "is” is posited, have only two oppositions, one between the finites, as in "Every man runs,” "Not every man runs,” the other between the infinites with respect to subject, as in "Every non-man runs,” "Not every non-man runs.” |
Cajetanus lib. 2 l. 3 n. 13 Deinde cum dicit: non enim dicendum est etc., respondet tacitae quaestioni. Et circa hoc facit duo: primo, ponit solutionem quaestionis; deinde, probat eam; ibi: manifestum est autem et cetera. Est ergo quaestio talis: cur negatio infinitans numquam addita est supra signo universali aut particulari, ut puta, cum vellemus infinitare istam, omnis homo currit, cur non sic infinitata est, non omnis homo currit, sed sic, omnis non homo currit? Huic namque quaestioni respondet, dicens quod quia nomen infinitabile debet significare aliquid universale, vel singulare; omnis autem et similia signa non significant aliquid universale aut singulare, sed quoniam universaliter aut particulariter; ideo non est dicendum, non omnis homo, si infinitare volumus (licet debeat dici, si negare quantitatem enunciationis quaerimus), sed negatio infinitans ad ly homo, quod significat aliquid universale, addenda est, et dicendum, omnis non homo. | 13. Then he answers an implied question when he says, We, must not say "non-every man” but must add the negation to man, etc. First he states the solution of the question, then he proves it where he says, This is evident from the following, etc. The question is this: Why is the negation that makes a word infinite never added to the universal or particular sign? For example, when we wish to make "Every man runs” infinite, why do we do it in this way "Every non-man runs,” and not in this, "Non-every man runs.” He answers the question by saying that to be capable of being made infinite a name has to signify something universal or singular. "Every” and similar signs, however, do not signify something universal or singular, but that something is taken universally or particularly. Therefore, we should not say "non-every man” if we wish to infinitize (although it may be used if we wish to deny the quantity of an enunciation), but must add the infinitizing negation to "man,” which signifies something universal, and say "every non-man.” |
Cajetanus lib. 2 l. 3 n. 14 Deinde cum dicit: manifestum est autem ex eo quod est etc., probat hoc quod dictum est, scilicet quod omnis et similia non significant aliquod universale, sed quoniam universaliter tali ratione. Illud, in quo differunt enunciationes praecise differentes per habere et non habere ly omnis, est non universale aliquod, sed quoniam universaliter; sed illud in quo differunt enunciationes praecise differentes per habere et non habere ly omnis, est significatum per ly omnis; ergo significatum per ly omnis est non aliquid universale, sed quoniam universaliter. Minor huius rationis, tacita in textu, ex se clara est. Id enim in quo, caeteris paribus, habentia a non habentibus aliquem terminum differunt, significatum est illius termini. Maior vero in littera exemplariter declaratur sic. Illae enunciationes homo currit, et omnis homo currit, praecise differunt ex hoc, quod in una est ly omnis, et in altera non. Tamen non ita differunt ex hoc, quod una sit universalis, alia non universalis. Utraque enim habet subiectum universale, scilicet ly homo, sed differunt, quia in ea, ubi ponitur ly omnis, enunciatur de subiecto universaliter, in altera autem non universaliter. Cum enim dico, homo currit, cursum attribuo homini universali, sive communi, sed non pro tota humana universitate; cum autem dico, omnis homo currit, cursum inesse homini pro omnibus inferioribus significo. Simili modo declarari potest de tribus aliis, quae in textu adducuntur, scilicet, homo non currit, respectu suae universalis universaliter, omnis homo non currit: et sic de aliis. Relinquitur ergo, quod, omnis et nullus et similia signa nullum universale significant, sed tantummodo significant, quoniam universaliter de homine affirmant vel negant. | 14. Where he says, This is evident from the following, etc., he proves that "every” and similar words do not signify a universal but that a universal is taken universally. His argument is the following: That by which enunciations having or not having the "every” differ is not the universal; rather, they differ in that the universal is taken universally. But that by which enunciations having and not having the "every” differ is signified by the "every.” Therefore, that which is signified by the "every” is not a universal but that the universal is taken universally. The minor of the argument is evident, though not explicitly given in the text: that in which the having of some term differs from the not having of it, other things being equal, is the signification of that term. The major is made evident by examples. The enunciations "Man matures” and "Every man matures” differ precisely by the fact that in one there is an "every,” in the other not. However, they do not differ in such a way by this that one is universal, the other not universal, for both have the universal subject, "man”; they differ because in the one in which "every” is posited, the enunciation is of the subject universally, but in the other not universally. For when I say, "Man matures,” I attribute maturing to "man” as universal or common but not to man as to the whole human race; when I say, "Every man matures,” however, I signify maturing to be present to man according to all the inferiors. This is evident, too, in the three other examples of enunciations in Aristotle’s text. For example, "Non-man matures” when its universal is taken universally becomes "Every non-man matures,” and so of the others. It follows, therefore, that "every” and "no” and similar signs do not signify a universal but only signify that they affirm or deny of man universally. |
Cajetanus lib. 2 l. 3 n. 15 Notato hic duo: primum est quod non dixit omnis et nullus significat universaliter, sed quoniam universaliter; secundum est, quod addit, de homine affirmant vel negant. Primi ratio est, quia signum distributivum non significat modum ipsum universalitatis aut particularitatis absolute, sed applicatum termino distributo. Cum enim dico, omnis homo, ly omnis denotat universitatem applicari illi termino homo, ita quod Aristoteles dicens quod omnis significat quoniam universaliter, per ly quoniam insinuavit applicationem universalitatis importatam in ly omnis in actu exercito, sicut et in I posteriorum, in definitione scire applicationem causae notavit per illud verbum quoniam, dicens: scire est rem per causam cognoscere, et quoniam illius est causa. Ratio autem secundi insinuat differentiam inter terminos categorematicos et syncategorematicos. Illi siquidem ponunt significata supra terminos absolute; isti autem ponunt significata sua supra terminos in ordine ad praedicata. Cum enim dicitur, homo albus, ly albus denominat hominem in seipso absque respectu ad aliquod sibi addendum. Cum vero dicitur, omnis homo, ly omnis etsi hominem distribuat, non tamen distributio intellectum firmat, nisi in ordine ad aliquod praedicatum intelligatur. Cuius signum est, quia, cum dicimus, omnis homo currit, non intendimus distribuere hominem pro tota sua universitate absolute, sed in ordine ad cursum. Cum autem dicimus, albus homo currit, determinamus hominem in seipso esse album et non in ordine ad cursum. Quia ergo omnis et nullus, sicut et alia syncategoremata, nil aliud in enunciatione faciunt, nisi quia determinant subiectum in ordine ad praedicatum, et hoc sine affirmatione et negatione fieri nequit; ideo dixit quod nil aliud significant, nisi quoniam universaliter de nomine, idest de subiecto, affirmant vel negant, idest affirmationem vel negationem fieri determinant, ac per hoc a categorematicis ea separavit. Potest etiam referri hoc quod dixit, affirmant vel negant, ad ipsa signa, scilicet omnis et nullus, quorum alterum positive distribuit, alterum removendo. | 15. Two things should be noted here: first, that Aristotle does not say "every” and "no” signify universally, but that the universal is taken universally; secondly, that he adds, they affirm or deny of man. The reason for the first is that the distributive sign does not signify the mode of universality or of particularity absolutely, but the mode applied to a distributed term. When I say, "every man” the "every” denotes that universality is applied to the term "man.” Hence, when Aristotle says "every” signifies that a universal is taken universally, by the "that” he conveys the application in actual exercise of the universality denoted by the "every,” just as in I Posteriorum [2: 71b 10] in the definition of "to know,” namely, To know scientifically is to know a thing through its cause and that this is its cause, he signifies by the word "that” the application of the cause. The reason for the second is to imply the difference between categorematic and syneategorematic terms. The former apply what is signified to the terms absolutely; the latter apply what they signify to the terms in relation to the predicates. For example, in "white man” the "white” denominates man in himself apart from any regard to something to be added; but in "every man,” although the "every” distributes man,” the distribution does not confirm the intellect unless it is under stood in relation to some predicate. A sign of this is that when we say "Every man runs” we do not intend to distribute "man” in its whole universality absolutely, but only in relation to "running.” When we say "White man runs,” on the other hand, we designate man in himself as "white” and not in relation to "running.” Therefore, since "every” and "no” and the other syncategorematic terms do nothing except determine the subject in relation to the predicate in the enunciation, and this cannot be done without affirmation and negation, Aristotle says that they only signify that the affirmation or negation is of a name, i.e., of a subject, universally, i.e., they prescribe the affirmation or negation that is being formed, and by this he separates them from categorematic terms. They affirm, or deny can also be referred to the signs themselves i.e., "every” and "no,” one of which distributes positively, the other distributes by removing. |
Cajetanus lib. 2 l. 3 n. 16 Deinde cum dicit: ergo et caetera eadem etc., concludit adiectivarum enunciationum conditiones. Dixerat enim quod adiectivae enunciationes idem faciunt quoad oppositionum numerum, quod substantivae de secundo adiacente; et hoc declaraverat, oppositionum numero exemplariter subiuncto. Et quia ad hanc convenientiam sequitur convenientia quoad finitationem praedicatorum, et quoad diversam subiectorum quantitatem, et earum multiplicationem ex ductu quaternarii in seipsum, et si qua sunt huiusmodi enumerata; ideo concludit: ergo et caetera, quae in illis servanda erant, eadem, idest similia istis apponenda sunt. | 16. When he says All else in enunciations in which "is”does not join the predicate to the subject, etc., he concludes the treatment of the conditions of adjectival enunciations. He has already stated that adjectival enunciations are the same with respect to the number of oppositions as substantival enunciations with "is” as the second element, and has clarified this by a table showing the number of oppositions. Now, since upon this conformity follows conformity both with respect to finiteness of predicates and with respect to the diverse quantity of subjects, and also-if any enunciations of this kind are enumerated—their multiplication in sets of four, he concludes, Therefore also the other things, which are to be observed in them, are to be considered the same, i.e., similar to these. |