Authors/Thomas Aquinas/posteriorum/L1/Lect15

From The Logic Museum
Jump to navigationJump to search

Lecture 15 Demonstration does not skip from one genus to an alien genus

Latin English
Lecture 15 (75a38-b20) DEMONSTRATION DOES NOT SKIP FROM ONE GENUS TO AN ALIEN GENUS
lib. 1 l. 15 n. 1 Postquam ostendit philosophus quod demonstratio est ex his quae sunt per se, hic concludit quod demonstratio est ex principiis propriis, non extraneis, neque ex communibus. Et dividitur in duas partes: in prima, ostendit quod demonstratio procedit ex propriis principiis; in secunda, determinat quae sint principia propria et quae communia; ibi: difficile autem et cetera. Prima in duas: in prima, ostendit quod demonstratio non procedit ex principiis extraneis; in secunda, ostendit quod non procedit ex principiis communibus; ibi: quoniam autem manifestum est et cetera. Prima in duas: in prima, ex praemissis ostendit quod demonstratio non est ex principiis extraneis; in secunda, ex praemissis etiam ostendit quod demonstrationes non sunt de rebus corruptibilibus, sed de sempiternis; ibi: manifestum autem et si sint propositiones et cetera. Circa primum tria facit: primo, proponit intentum; secundo, probat propositum; ibi: tria enim sunt etc.; tertio, concludit intentum; ibi: propter hoc geometriae et cetera. After showing that demonstration is from things that are per se, the Philosopher here concludes that demonstration is from principles which are proper and not from extraneous or common principles. His treatment falls into two parts. In the first he shows that demonstration proceeds from proper principles. In the second he establishes which principles are proper and which common (76a26) [L. 18]. The first is divided into two parts. In the first he shows that demonstration does not proceed from extraneous principles. In the second that it does not proceed from common principles (75b37) [L. 17]. The first is divided into two parts. In the first, from the preceding, he shows that demonstration is not from extraneous principles. In the second, also from the preceding, he shows that demonstrations do not bear on corruptible things but on eternal (75b21) [L. 16]. Concerning the first he does three things. First, he states his proposition. Secondly, he proves it (75a39). Thirdly, he concludes to what he intended (75b13).
lib. 1 l. 15 n. 2 Dicit ergo primo quod, ex quo demonstratio est ex his quae sunt per se, manifestum est quod non contingit demonstrare descendentem vel procedentem ex alio genere in aliud genus, sicut non contingit quod geometria ex propriis principiis demonstret aliquid descendens in arithmeticam. He says therefore first (75a38) that inasmuch as demonstration is from things that are per se, it is plain that demonstration does not consist in descending or skipping from one genus to another, as geometry, demonstrating from its own principles, does not descend to something in arithmetic.
lib. 1 l. 15 n. 3 Deinde cum dicit: tria enim etc., propositum probat. Et circa hoc tria facit. Primo, praemittit quae sint necessaria ad demonstrationem, dicens quod in demonstrationibus tria sunt. Unum est, quod demonstratur, scilicet conclusio, quae quidem continet in se id, quod per se inest alicui generi: per demonstrationem enim concluditur propria passio de proprio subiecto. Aliud autem sunt dignitates, ex quibus demonstratio procedit. Tertium autem est genus subiectum, cuius proprias passiones et per se accidentia demonstratio ostendit. Then (75a39) he proves this proposition and does three things. First, he lays down the things that are necessary for a demonstration, saying that “three things are necessary in demonstrations. One is that which is demonstrated,” namely, the conclusion which, as a matter of fact, contains within itself that which inheres in its genus per se. For through demonstration a proper attribute is concluded of its proper subject. Another is the dignities [maxims or axioms] from which demonstration proceeds. The third is the generic subject whose proper attributes and per se accidents demonstration reveals.
lib. 1 l. 15 n. 4 Secundo; ibi: ex quibus igitur etc., ostendit quid praedictorum trium possit esse commune diversis scientiis et quid non, dicens quod horum trium unum, scilicet dignitates, ex quibus demonstratio procedit, contingit esse idem in diversis demonstrationibus et etiam in diversis scientiis: sed in illis scientiis, quarum est diversum genus subiectum, sicut in arithmetica, quae est de numeris, et geometria, quae est de magnitudinibus, non contingit quod demonstratio, quae procedit ex principiis unius scientiae, puta arithmeticae, descendat ad subiecta alterius scientiae, sicut ad magnitudines, quae sunt subiecta geometriae; nisi forte subiectum unius scientiae contineatur sub subiecto alterius, sicut si magnitudines contineantur sub numeris (quod quidem qualiter contingat, scilicet subiectum unius scientiae contineri sub subiecto alterius, posterius dicetur). Magnitudines enim sub numeris non continentur, nisi forte secundum quod magnitudines numeratae sunt. Subiecta etiam diversarum demonstrationum sive scientiarum diversa sunt. Arithmetica enim demonstratio semper habet genus proprium circa quod demonstrat. Et aliae scientiae similiter. Secondly (75b3), he shows which of the three aforesaid can be common to various sciences and which cannot, saying that one of the three, namely, the dignities, from which demonstration proceeds, happens to be the same in diverse demonstrations and even in diverse sciences. But in those sciences whose respective generic subject is diverse, as in arithmetic which is concerned with numbers, and in geometry which is concerned with magnitudes, it does not occur that a demonstration which starts with the principles of one science, say, of arithmetic, descends to the subjects of another science, say to magnitudes, which pertain to geometry; unless perchancp the subject of one science should be contained under the sub., ject of the other, for example, if magnitudes should be contained under, numbers. (How this occurs, namely, how the subject of one science may be contained under the subject of another, will be discussed later). For magnitudes are not contained under numbers except perhaps in the sense that magnitudes are numbered. In any case, the subjects of diverse demonstrations or sciences are diverse. For an arithmetical demonstration always has its proper genus in respect to which it demonstrates, and so do the other sciences.
lib. 1 l. 15 n. 5 Tertio; ibi: quare aut simpliciter etc., probat propositum. Et circa hoc duo facit. Primo, inducit principale propositum per modum conclusionis, eo quod ex praemissis haberi potest, dicens: quare manifestum est quod necesse est, aut esse simpliciter idem genus, circa quod sumuntur principia et conclusiones, et sic non est descensus, neque transitus de genere in genus: aut si debet demonstratio descendere ab uno genere in aliud, oportet esse unum genus sic, idest quodammodo. Aliter enim impossibile est quod demonstretur aliqua conclusio ex aliquibus principiis, cum non sit idem genus vel simpliciter vel secundum quid. Thirdly (75b8), he proves his proposition and does two things. First he brings in the main intent after the manner of a conclusion on the ground that it can be obtained from the aforesaid, saying: Hence it is clear that it is necessary either that the genus with which the principles and conclusions deal be absolutely the same (in which case there is no descent or skipping from one genus to another); or if the demonstration is to descend from one genus to another, the two must be one thus, i.e., somehow. For otherwise it is impossible for a conclusion to be demonstrated from principles, since there is not the same genus either absolutely or in a qualified sense.
Sciendum est autem quod simpliciter idem genus accipitur, quando ex parte subiecti non sumitur aliqua differentia determinans, quae sit extranea a natura illius generis; sicut si quis per principia verificata de triangulo procedat ad demonstrandum aliquid circa isoscelem vel aliquam aliam speciem trianguli. Secundum quid autem est unum genus, quando assumitur circa subiectum aliqua differentia extranea a natura illius generis; sicut visuale est extraneum a genere lineae, et sonus est extraneus a genere numeri. Numerus ergo simpliciter, qui est genus subiectum arithmeticae, et numerus sonorum, qui est genus subiectum musicae, non sunt unum genus simpliciter. Similiter autem nec linea simpliciter, quam considerat geometra, et linea visualis, quam considerat perspectivus. Unde patet quod quando ea, quae sunt lineae simpliciter, applicantur ad lineam visualem, fit quodammodo descensus in aliud genus: non autem quando ea, quae sunt trianguli, applicantur ad isoscelem. However, it should be noted that a genus absolutely the same is being taken when on the part of the subject no determinate difference is admitted which is alien to the nature of that genus: for example, if someone using principles verified of triangle should proceed to demonstrate something about isosceles or about any other species of triangle. But a genus is one in a qualified sense when a difference alien to the nature of the genus is admitted of the subject, as “visual” is alien to the genus of line, and “sound” to the genus of number. Therefore, number absolutely, which is the generic subject of arithmetic, and sonant number, which is the generic subject of music, are not one genus absolutely speaking. The same goes for line absolutely, which geometry considers, and the visual line considered in optics. Hence it is clear that when matters pertaining absolutely to the line are applied to the visual line, a descent is being made to another genus—which is not the case when matters pertaining to triangle are applied to isosceles.
lib. 1 l. 15 n. 6 Secundo; ibi: ex eodem enim genere etc., ostendit propositum hoc modo. Oportet in demonstratione eiusdem generis esse media et extrema. Extrema autem in conclusione continentur. Nam maior extremitas in conclusione est praedicatum; minor vero extremitas subiectum; medium autem in praemissis continetur. Oportet igitur principia et conclusiones circa idem genus sumi. Cum autem huic coniunxerimus quod diversae scientiae sint circa diversa genera subiecta; ex necessitate sequitur quod ex principiis unius scientiae non concludatur aliquid in alia scientia, quae non sit sub ea posita. Secondly (75b10), he manifests the proposition in this way. In demonstration the middles and the extremes must belong to the same genus. Now the extremes are contained in the conclusion: for the major extreme in the conclusion is its predicate, and the minor its subject. But the middle is contained in the premises. It is required, therefore, that the principles and conclusion be taken with respect to the same genus. When we add to this the fact that diverse sciences are of necessity concerned with subjects generically diverse, it follows that from the principles of one science, something in another science not under it may not be concluded.
Quod autem in demonstratione oporteat media et extrema unius generis esse, sic probat. Detur enim quod medium sit alterius generis ab extremis, sicut si extrema sint triangulus et habere tres angulos aequales duobus rectis. Manifestum est quod passio conclusa de triangulo, per se inest ei; non autem per se inest aeneo. Et si e contrario passio per se inesset aeneo, puta sonorum esse, vel aliquid huiusmodi, palam est quod per accidens inesset triangulo. That the middles and extremes in a demonstration must be of one genus he proves thus: Suppose that a middle belongs to a genus other than that of the extremes which might be, for example, “triangle” and “have three angles equal to two right angles.” Now a proper attribute concluded of triangle is in it per se but is not in “brazen” per se; or, conversely, if the proper attribute is per se in “brazen,” say, “high-sounding” or the like, it is obviously in triangle per accidens.
Unde patet quod oportet omnino, si subiectum conclusionis et medium sint penitus alterius generis, quod passio vel non per se insit medio vel non per se insit subiecto: et ita oportet quod alteri eorum insit per accidens. Et si quidem insit medio per accidens, erit per accidens in praemissis; si autem subiecto, erit in conclusione: et hoc ex parte passionis. Sed utroque modo oportebit per accidens esse in praemissis, quantum ad hoc quod subiectum accipitur sub medio: sicut si triangulus accipiatur sub aeneo aut e converso. Ostensum est autem quod in demonstrationibus tam conclusio, quam praemissae sunt per se et non per accidens. Oportet ergo in demonstrationibus medium et extrema eiusdem generis esse. This example makes it plain that if the subject of the conclusion and the middle are in entirely different genera, then the proper attribute is either not in the middle per se or else not in the subject per se. Consequently, it is in one of them per accidens. If it is in the middle per accidens, something will be in the premises per accidens. But if it is in the subject per accidens, something will be per accidens in the conclusion: and this on the part of a proper attribute. But either way something will be per accidens in the premises, inasmuch as the subject is subsumed under the middle, for example, triangle under brazen, or vice versa. However, it has been previously established that in a demonstration both the conclusion and the premises are per se and not per accidens. It is required, therefore, in demonstrations that the middle and the extremes be of the same genus.
lib. 1 l. 15 n. 7 Deinde cum dicit: propter hoc geometriae etc., infert duas conclusiones ex praemissis. Quarum prima est quod nulla scientia demonstrat aliquid de subiecto alterius scientiae, sive sit scientiae communioris sive alterius scientiae disparatae; sicut geometria non demonstrat quod contrariorum eadem est scientia: contraria enim pertinent ad scientiam communem, scilicet ad philosophiam primam vel dialecticam. Et similiter geometria non demonstrat quod duo cubi sint unus cubus, idest quod ex ductu unius numeri cubici in alium numerum cubicum surgat numerus cubicus. Dicitur autem numerus cubicus, qui consurgit ex ductu unius numeri in seipsum bis; sicut octonarius est numerus cubicus, surgit enim ex ductu binarii in seipsum bis, quia bis duo bis sunt octo. Et eadem ratione vigintiseptem est numerus cubicus, et radix eius est tria, quia ter tria ter faciunt vigintiseptem. Si ergo ducantur octo in vigintiseptem consurgit numerus cubicus, idest ducenta sexdecim, cuius radix est sex: quia sexies sex sexies sunt ducenta sexdecim. Hoc ergo habet probare arithmeticus, non geometra. Et similiter, quod est unius scientiae non habet probare alia scientia, nisi forte una scientia sit sub altera; sicut se habet perspectiva ad geometriam, et consonantia vel harmonica, idest musica, ad arithmeticam. Then (75b13) he infers two conclusions from the foregoing. The first conclusion is that no science demonstrates anything about the subject of another science, when this other science is more common than o entirely disparate from the first. Thus, geometry does not demonstrate that one and the same science deals with the both of two contraries: for contraries pertain to the common science, namely, to first philosophy or to dialectics. In like manner, geometry does not demonstrate that “two cubes are one cube,” i.e., that the product of one cube and another cube is a cube. “Cube” here means the number which results from multiply., ing a number by itself twice: for example, 8 is a cube, for it is the result 11of multiplying 2 by itself twice, for 2 times 2 times 2 are 8. Similarly,, 27 is a cube, whose root is 3, because 3 times 3 times 3 make 27. Now if 8 be multiplied by 27 the product is 216, which is a cube whose root is 6, because 6 times 6 times 6 make 216. Therefore, arithmetic, not, geometry has: the power to prove this. Similarly, that which pertains to one science cannot be proved by another science unless the one happens~, to be under the other, as optics is under geometry, and consonance or harmony, i.e., music, is under arithmetic.
lib. 1 l. 15 n. 8 Secunda conclusio ponitur; ibi: neque si aliquid et cetera. Et est quod scientia etiam de proprio subiecto non probat quodlibet accidens, sed accidens quod est sui generis. Sicut si aliquid inest lineis, non secundum quod sunt lineae, neque secundum propria principia linearum, hoc non demonstrat geometra de lineis; sicut quod linea recta sit pulcherrima linearum, aut recta linea si est contraria circulari vel non. Haec enim non sunt secundum proprium genus lineae, sed secundum aliquid communius. Pulchrum enim et contrarium genus lineae transcendunt. The second conclusion (75b17) states that a science cannot prove just any random accident of its subject, but the accidents proper to its genus Thus, if something belongs to lines not as lines or not according to th proper principles of lines, geometry does not demonstrate it of lines: for example, that a straight line is the most beautiful of lines, or whether straight line is contrary or not to the curved. For these matters are outside the proper genus of line and belong to something more general. For beauty and contrary transcend the genus of line.

Notes