Authors/Thomas Aquinas/posteriorum/L1/Lect43
From The Logic Museum
< Authors | Thomas Aquinas | posteriorum | L1
Jump to navigationJump to searchLecture 43 The principles of all syllogisms are not the same
Latin | English |
---|---|
Lecture 43 (88a18-b29) PRINCIPLES OF ALL SYLLOGISMS ARE NOT THE SAME | |
lib. 1 l. 43 n. 1 Postquam philosophus prosecutus est de illis quorum est scientia, hic prosequitur de principiis scientiarum, ostendens non esse eadem principia omnium syllogismorum. Et primo, ostendit hoc logice, idest per rationes communes omnibus syllogismis; secundo, ostendit hoc analytice, scilicet per rationes proprias demonstrationis; ibi: si vero aliter et cetera. Circa primum tria facit: primo, ostendit propositum per differentiam syllogismorum falsorum a veris; secundo, per differentiam falsorum ad invicem; ibi: postea neque falsae etc.; tertio, per differentiam syllogismorum verorum ad invicem; ibi: neque verorum et cetera. Circa primum duo facit; primo, ostendit propositum; secundo, excludit quamdam obviationem; ibi: et si namque sit verum et cetera. | After his treatment concerning that about which there is science, the Philosopher continues here with the principles of sciences and shows that the principles of all syllogisms are not the same. First, he shows this logically, i.e., through reasons common to all syllogisms. Secondly, he shows it analytically, i.e., through reasons that are peculiar to demonstration (88b10). Concerning the first he does three things. First, he proves his proposition by showing the difference between false syllogisms and true ones. Secondly, by the difference between some false syllogisms and other false ones (88a26). Thirdly, by the difference between some true syllogisms and other true ones (88a31). Concerning the first he does two things. First, he proves his proposition. Secondly, he excludes an objection (88a20). |
lib. 1 l. 43 n. 2 Dicit ergo primo quod, primo logice speculando, manifestum est quod non possunt esse eadem principia omnium syllogismorum, propter hoc quod quidam syllogismi sunt falsi, idest concludentes falsum, et quidam veri, idest concludentes verum. Syllogismorum autem falsorum et verorum sunt diversa principia. Nam syllogismorum verorum sunt principia vera; syllogismorum autem falsorum sunt principia falsa. Non ergo omnium syllogismorum sunt eadem principia. | He says therefore first (88al2) that if we first speculate this matter in a logical way, it is clear that the principles of all syllogisms cannot be the same, inasmuch as some syllogisms are false, i.e., conclude false statements, and some are true, i.e., conclude to the truth. Now the principles of false and of true syllogisms are diverse: for the principles of true syllogisms are true, but the principles of false syllogisms are false. Therefore the principles of all syllogisms are not the same. |
lib. 1 l. 43 n. 3 Deinde cum dicit: et si namque sit verum etc., excludit quamdam obviationem. Posset enim aliquis dicere quod etiam syllogismorum verorum sunt principia falsa, quia contingit ex falsis syllogizare verum. Sed hoc excludit dicens quod quamvis contingat syllogizare verum ex falsis, tamen hoc solum contingit semel in primo syllogismo, quo ex falsis concluditur verum. Sed si oporteat alios syllogismos inducere ad probandum praemissas propositiones, necesse erit quod illi syllogismi procedant ex falsis, quia ex veris non concluditur falsum: et ita in sola prima syllogizatione ex falsis concluditur verum. | Then (88a20) he excludes an objection. For someone might say that there are false principles even in true syllogisms, because it is possible to syllogize the true from the false. But he excludes this, saying that although it happens that the true is syllogized from the false, this occurs only once in the first syllogism, in which the true is concluded from the false. But if one is forced to adduce other syllogisms to support the propositions in the premises, then those syllogisms would have to proceed from what is false, because from what is true the false cannot be concluded. Consequently, it is only in the first syllogism that the true is concluded from the false. |
Et hoc manifestat per exemplum. Sit enim haec propositio vera, omne c est a: accipiatur autem ad utramque extremitatem medium falsum, quod est b, ita scilicet quod neque a insit b, neque b insit c. Si accipiantur aliqua media ad probandum praemissas propositiones, omnes propositiones falsorum syllogismorum erunt falsae: quia omnis conclusio falsa concluditur ex falsis, sed conclusio vera potest concludi ex omnibus veris. Unde quando propositiones praemissae sunt verae, ex quibus concluditur verum, non oportebit devenire ad aliquod falsum. Sic igitur, cum aliae sint propositiones verae, et aliae falsae, sequitur quod alia sunt principia verorum syllogismorum et alia falsorum. | Then he gives an example of this: Let the proposition, “Every C is A,” be true, and take for each of these extremes a false middle, B, so that A is not in B nor B in C. Now if other middles be taken to prove these propositions, all the propositions of the false syllogism will be false, because every false conclusion is concluded from the false, but a true conclusion can be concluded from the true. Hence, when the propositions from which the true is concluded are true, one need not reach anything false. Thus, therefore, since some propositions are true and some false, it follows that the principles of true syllogisms are not the same as the principles of false syllogisms. |
lib. 1 l. 43 n. 4 Deinde cum dicit: postea neque falsae ex eisdem etc., ostendit quod nec etiam falsorum syllogismorum sunt eadem principia. Contingit enim conclusiones falsas esse contrarias ad invicem, et incompossibiles sibi esse. Sicut haec conclusio, iustitia est iniustitia, est incompossibilis huic conclusioni, iustitia est timor, cum utraque sit falsa. Timor enim sicut differt genere a iustitia, ita etiam ab iniustitia. Similiter etiam hae duae conclusiones falsae sunt contrariae et incompossibiles, homo est equus, et, homo est bos. Et similiter hae duae propositiones sunt incompossibiles, aequale est maius, et, aequale est minus. Oportet autem concludere sic esse ex aliquibus, quibus positis, ista sequuntur: unde oportet quod sicut ista sunt contraria et incompossibilia, ita etiam principia ex quibus concluduntur. | Then (88a26) he shows that not even the principles of false syllogisms are the same. For it occurs that some false conclusions are contrary to one another and incompatible with other false conclusions. Thus, the conclusion, “Justice is injustice,” is incompatible with the conclusion, “Justice is fear,” since both are false. For just as fear differs generically from justice, so from injustice. In like fashion, the two conclusions, “Man is a horse,” and “Man is a cow,” are contrary and incompatible. Again, these two propositions are incompatible, “Something equal is greater,” and “Something equal is less.” For it is necessary to arrive at such conclusions from principles, from which, when they are laid down, other things follow. Therefore, since they are contrary and incompatible, so too were the principles from which they were concluded. |
lib. 1 l. 43 n. 5 Deinde cum dicit: neque etiam verorum etc., ostendit quod nec syllogismorum verorum sunt eadem principia, quatuor rationibus. Quarum prima sumitur ex differentia principiorum propriorum; unde dicit quod neque etiam verorum syllogismorum sunt eadem principia. Diversorum enim generum diversa principia sunt: sicut patet quod magnitudinum principia sunt puncta, numerorum autem unitates; quae non conveniunt sibi invicem, quia unitates non habent positionem, puncta vero habent. | Then (88a31) he shows that not even in the case of true syllogisms are the principles the same. And he gives four reasons, the first of which is based on the differences among proper principles. Hence he says that not even all these,” i.e., true conclusions, “are inferred from the same basic truths.” For the principles of diverse genera are themselves diverse: thus the pripciples of magnitudes are points, and of numbers unities; and these are not exactly the same, for numbers do not have position, but points do. |
Si autem principia omnium syllogismorum convenirent ad invicem, necesse esset quod vel convenirent in medio, vel sursum ascendendo versus maiorem extremitatem, vel deorsum descendendo versus minorem, quia in syllogismis necesse est quod termini vel assumantur interius vel exterius. Interius quidem, quando multiplicantur syllogismi ad probandum propositiones inductas. Tunc enim necesse est quod accipiantur media, quae sunt inter praedicata propositionum et subiecta. Puta si sit talis syllogismus, omne b est a, omne c est b, ergo omne c est a; si oporteat probari omne b est a, oportet assumere aliquod medium inter b et a, puta d. Et similiter si debeat probari minor, oportet accipere aliquod medium inter c et b, puta e: et sic semper termini assumpti interius habentur. | Furthermore, if all principles of syllogisms were in agreement, they would have to meet at some same middle either by ascending upwards to the major term or by descending downwards toward the minor term: because in a syllogism it is necessary that the terms be assumed either within or without. They are assumed within, when a multiplicity of syllogisms is used to prove the propositions presented. For then it is necessary to take middles that are between the predicates of the propositions and their subjects. Thus, if we form the syllogism, “Every B is A, Every C is B, therefore, Every C is A”; if it is necessary to prove “Every B is A,” we must take a middle between B and A, say D. Again, if it is necessary to prove the minor, we must take another middle between C and B, say E. In this process the terms assumed are always within. |
Exterius autem assumuntur, quando vel maior extremitas accipitur ut medium ascendendo, vel minor descendendo: puta si a concludatur de c per b, et iterum c concludatur de b per a; et sic inde. | However, they are assumed from without, when the major term is taken as middle by ascending, or the minor by descending: thus, if A is concluded of C through B, and C is then concluded of B through A, and so on; similarly, by descending, if we conclude B of E through C. |
Similiter etiam proceditur descendendo, si b concludatur de f per c. Necesse est ergo in syllogismis communicantibus in principiis, vel quod accipiatur medium unius syllogismi supra propositiones alterius syllogismi; vel accipiantur extrema unius syllogismi supra vel infra extrema alterius syllogismi. Sed hoc non potest esse in rebus quarum sunt principia diversa: quia puncta non possunt accipi neque ut media, neque ut extrema in syllogismis in quibus concluditur aliquid de numero; neque unitates in syllogismis in quibus concluditur aliquid de magnitudinibus. Relinquitur ergo quod non possunt esse eadem principia omnium syllogismorum. | Therefore, in syllogisms sharing principles in common, it is necessary either that the middle of one syllogism be taken above the propositions of another syllogism or that the extremes of one be taken above or below the extremes of the other syllogism. But this cannot occur in things whose principles are diverse, because points cannot be taken as middles or extremes in syllogisms in which something about number is concluded, nor unities in syllogisms in which something about magnitudes is concluded. What remains, therefore, is that the principles of all syllogisms cannot be the same. |
lib. 1 l. 43 n. 6 Secunda ratio ponitur ibi: sed neque communium principiorum etc., quae sumitur ex principiis communibus; et dicit quod non possunt esse aliqua principia communia, ex quibus solum omnia syllogizentur, sicut hoc est principium commune, de quolibet est affirmatio vel negatio; quod quidem communiter est verum in omni genere; non tamen est possibile, quod ex solis aliquibus taliter communibus possint omnia syllogizari: quia genera entium sunt diversa, et diversa sunt principia quae sunt solum quantitatum principia, ab his quae solum sunt principia qualitatum; quae oportet coassumere principiis communibus ad concludendum in qualibet materia. Puta si in quantitatibus oporteat ex dicto principio communi syllogizare, oportet accipere quod, cum haec sit falsa, punctus est linea, oportet hanc esse veram, punctus non est linea. Et similiter in qualitatibus oportet coassumere aliquid proprium qualitati. Unde relinquitur quod impossibile sit esse eadem principia omnium syllogismorum. | The second reason is presented at (88a37) and it is based on common principles. He says that there cannot be certain common principles from which alone are syllogized all conclusions, as this common principle, “Of each thing there is affirmation or negation,” which is universally true in every genus. Nevertheless, it is impossible that all things be syllogized exclusively from such common principles, because the genera of beings are diverse. Thus, the principles which pertain only to quantities are diverse from those which pertain exclusively to qualities. Such principles must be co-assumed with common principles, if one is to reach a conclusion in each matter. For example, if one wishes in quantities to syllogize from the aforesaid common principle, it is necessary to admit that since it is false that a point is a line, it must be true that a point is not a line; in like manner, in qualities, it is necessary to co-assume something peculiar to quality. Hence what remains is that it is impossible that the principles of all syllogisms be the same. |
lib. 1 l. 43 n. 7 Tertiam rationem ponit ibi: amplius principia non multo etc., quae sumitur ex comparatione praemissarum ad conclusiones; et dicit quod principia non sunt multum pauciora conclusionibus. Sunt quidem pauciora, quia, quamvis ad unam conclusionem inferendam duo principia, idest duae propositiones requirantur, quia una conclusio non concluditur immediate nisi ex duabus; tamen una propositione potest quis uti ad inferendum plurimas conclusiones, secundum quod sub subiecto aut sub praedicato multa accipi possunt. Non tamen sunt multo pauciora principia quam conclusiones; quia plurima eorum quae principiis coassumuntur ad conclusiones. Principia enim propositiones hic appellantur: propositiones autem aut assumpti termini aut immissi sunt; idest propositiones in syllogismis multiplicantur, aut assumendo terminos extrinsecus, vel supra maiorem extremitatem et infra minorem, ut supra dictum est, aut accipiendo terminos qui sunt in medio. | Then (88b4) he gives the third reason which is based on a comparison of premises with conclusions. And he says that the principles are not much fewer than the conclusions. They are as a matter of fact fewer, because although two principles are needed to infer one conclusion, i.e., two propositions are required, because one conclusion is not concluded immediately except from two premises, nevertheless you can use one proposition to infer a number of conclusions, insofar as many things can be taken under the subject or under the predicate. However, the principles are not much fewer than the conclusions, because most of the facts which are co-assumed with the principles to obtain other conclusions are themselves conclusions. (Here propositions are being called .,principles”). But propositions are formed of terms either added or interposed, i.e., propositions in syllogisms are multiplied either by assuming terms extrinsically (either above the major term and below the minor, as has been explained above), or by accepting terms which are in the middle. |
Et ad hoc addendum est quod conclusiones sunt infinitae: potest enim quodlibet concludi de quolibet vel affirmative vel negative. Et ne videretur hoc esse contrarium ei, quod supra ostenderat, praedicationes non procedere in infinitum, subiungit quod termini sunt finiti: et ad hoc pertinet quod supra ostensum est, esse statum in praedicationibus; sed ex terminis finitis possunt infinitae conclusiones fieri secundum diversas combinationes, ut tamen accipiamus communiter conclusiones, tam quae sunt per se quam quae sunt per accidens. Loquitur enim nunc communiter de syllogismis. Si ergo conclusiones sunt infinitae, principia autem non sunt multo pauciora conclusionibus, sequitur quod etiam principia syllogismorum sunt infinita. Non ergo sunt eadem principia omnium syllogismorum. | To this must be added the fact that conclusions are infinite. For anything can be concluded of anything else either affirmatively or negatively. And lest this seem to conflict with the earlier statement that predications do not proceed to infinity, he adds that the terms are finite: and this is why it was stated above that a stop must be made in predications. Nevertheless, an infinitude of conclusions can be derived from a finite number of terms according to diverse combinations, if we take “conclusions” in a general sense, as including those that are per se and those that are per accidens. For we are now speaking of syllogisms in general. Therefore, if the conclusions are infinite and the principles are not much fewer than the conclusions, it follows that principles of syllogisms are also infinite. Therefore, the principles of all syllogisms are not the same. |
lib. 1 l. 43 n. 8 Quartam rationem ponit ibi: amplius principia, haec quidem etc., quae sumitur ex differentia necessarii et contingentis; et dicit quod principiorum quibus utimur in syllogismo, quaedam sunt contingentia et quaedam sunt necessaria, ut patet in libro priorum, ubi docuit syllogizare et ex necessariis et ex contingentibus. Non autem eadem sunt necessaria et contingentia: ergo non sunt eadem principia omnium syllogismorum. | Then (88b8) he gives the fourth reason and it is based on the difference between the necessary and the contingent. And he says that some of the principles which we use in the syllogism are contingent and some necessary, as is clear from Prior Analytics I, where he taught how to syllogize from necessary and from contingent premises. However, the necessary and the contingent are not the same. Therefore, the principles of all syllogisms are not the same. |
Et hoc est quod concludit ex his duabus ultimis rationibus, quod secundum rationem praemissorum, cum infinitae sint conclusiones, impossibile est esse eadem principia omnium syllogismorum, aut etiam finita. | What he concludes from these last two reasons is that in view of what has been established, and because conclusions are infinite, it is impossible that the principles of all syllogisms either be the same or even be finite. |
lib. 1 l. 43 n. 9 Deinde cum dicit: si vero aliter quodammodo etc., ostendit idem analytice, scilicet per rationes proprias principiis, quibus scientiae demonstrant. Et ponit tres rationes. Circa quarum primam dicit quod, si aliquis non dicat omnium syllogismorum esse eadem principia, sed aliquo modo dicat aliter; scilicet quod quaedam sunt principia geometriae et quaedam logicae, quae dicuntur principia syllogismorum vel ratiocinationum, et quaedam sunt principia medicinae; et sic accipiendo principia omnium scientiarum, ista sic accepta eadem sunt principia omnium demonstrationum; hoc non facit ad propositum, quo quis vult sustinere eadem esse principia, quia per hoc dictum nihil aliud dicitur, nisi quod quaelibet scientia habet sua principia. | Then (88b10) he shows the same thing analytically, namely, through reasons proper to the principles by which sciences demonstrate. And he gives three reasons. Concerning the first of these he says that if someone does not say that the principles of all syllogisms are the same, but says something somewhat different, namely, that some are principles of geometry and some of logic-which are called the principles of syllogisms or reasonings—and some are principles of medicine, and so on for the principles of all sciences, so that in this sense the principles of all demonstrations are the same, this does not support his claim that principles are the same: because from the facts that are given, nothing follows except that each science has its own principles. |
Sed quod sint eadem principia unius scientiae quae sunt alterius (quod oporteret si eadem essent principia omnium syllogismorum scientialium), est impossibile et derisibile; quia secundum hoc sequeretur quod omnia quae sunt in scientiis, essent eadem, et ita omnes scientiae essent una scientia. Quae enim eisdem sunt eadem, sibi invicem sunt eadem. Sed principia cuiuslibet scientiae sunt quodammodo eadem conclusionibus, quia sunt unius generis. Non enim est ex uno in aliud genus demonstrare, ut supra dictum est. Si igitur principia sunt eadem, sequeretur quod omnia quae sunt in scientiis, essent eadem. | The contention that the principles of one science are the same as those of another-which would be required if the principles of all scientific syllogisms were the same-is impossible and ridiculous, because according to this it would follow that everything in the sciences would be the same and hence that all the sciences would be the same. For things that are the same as a same thing are the same. But the principles of each science are somehow the same as the conclusions, because they belong to the same genus: for one may not demonstrate by passing from one genus into another, as has been shown above. Therefore, if the principles are the same, it will follow that everything in the sciences would be the same. |
lib. 1 l. 43 n. 10 Secundam rationem ponit ibi: at vero neque quod ex omnibus etc., quae talis est. Si aliquis quaerens omnium eadem esse principia, hoc intendat dicere quod quodlibet demonstretur ex quolibet, hoc est stultum dicere; quia hoc neque est possibile in manifestis mathematibus, nec in resolutione. Et vocat manifesta mathemata, idest considerationes vel disciplinas, quando ex aliquibus propositionibus manifestis statim infertur conclusio. Vocat autem resolutionem, quando propositiones assumptae non sunt manifestae, sed oportet eas resolvere in alias manifestiores. Et quod hoc sit impossibile probat, quia utroque modo principia demonstrativorum syllogismorum sunt immediatae propositiones, quae vel statim assumuntur in manifestis mathematibus sive doctrinis, vel ad eas devenitur per resolutionem. Videmus autem quod demonstratur alia conclusio, coassumpta immediata propositione alia. Et ideo non potest esse quod ex quolibet demonstretur quodlibet. | Then (88b15) he gives the second reason and it is this: If a person who contends that the principles of all are the same, intended to say that anything is demonstrated from anything, then he is saying something foolish, because this is possible neither in “evident mathematicals nor in analysis.” (By “evident mathematicals,” i.e., evident considerations or disciplines he means those cases in which a conclusion is drawn immediately from evident premises; but by “analysis” he means those cases where the assumed propositions are not evident but must be analyzed into others which are more evident). And that this is impossible he proves on the ground that in each of these two cases the principles of the demonstrative syllogism are immediate propositions, which are either immediately assumed in evident mathematicals or doctrines, or are reached by analysis. But we see that a different conclusion is demonstrated, when a different immediate proposition is co-assumed. Consequently, it cannot be that anything is demonstrated from just anything. |
lib. 1 l. 43 n. 11 Consequenter cum dicit: si autem dicat aliquis etc., excludit quamdam obviationem. Posset enim aliquis dicere quod duplex est genus immediatarum propositionum: quaedam enim sunt immediatae propositiones primae, et quaedam secundae, ita quod accipiatur ordo immediatarum propositionum secundum ordinem terminorum. Nam illae propositiones immediatae quae consistunt in terminis primis et communibus, sicut est ens et non ens, aequale et inaequale, totum et pars, sunt primae et immediatae propositiones; ut, non contingit idem esse et non esse, et, quae uni et eidem sunt aequalia, sibi invicem sunt aequalia, et similia. Immediatae autem propositiones quae sunt circa posteriores terminos et minus communes, sunt secundae respectu primarum; sicut quod triangulus est figura, vel quod homo est anima. Potest ergo aliquis dicere quod secundae propositiones immediatae coassumuntur ad diversas conclusiones demonstrandas; sed primae propositiones immediatae sunt eaedem in omnibus demonstrationibus. | Then (88b20) he excludes a certain objection. For someone could say that there are two genera of immediate propositions: for some are first immediate propositions and some secondary, taking the order of immediate propositions according to the order of the terms. For those immediate propositions which consist of first and common terms, as “being” and “non-being,” “equal” and “unequal,” “whole” and “part,” are first and immediate propositions, as “It does not occur that the same thing both is and is not,” and “Two things which are equal to the same thing are equal,” and so on. But the immediate propositions that are concerned with later and less common terms are secondary in relation to the first, as that “a triangle is a figure,” or that “man is an animal.” Therefore, someone might say that secondary propositions are co-assumed for demonstrating diverse conclusions, but that the first immediate propositions are the same in all demonstrations. |
Et ideo ad hoc excludendum dicit quod, si aliquis dicat primas immediatas propositiones has esse illa principia ex quibus omnia demonstrantur, considerare debet quod nihilominus in unoquoque genere oportet esse unum principium vel unam propositionem immediatam, primam in illo genere, non primam simpliciter; et quod ex illa quae est prima simpliciter, coassumpto isto principio proprio huiusmodi generis, oportebit in hoc genere demonstrari. Et ita non ex solis communibus principiis possunt omnia demonstrari; sed oportet coaccipere propria, quae sunt diversa diversorum. | To exclude this he says that if anyone should assert that those first immediate propositions are the ones from which all things are demonstrated, he ought to consider that in each genus there must yet be one principle or one immediate proposition which is first in that genus, even though it is not absolutely first; and that from one which is absolutely first, together with a co-assumed principle proper to a particular genus, one should demonstrate in that genus. Consequently, not all things can be demonstrated from common principles alone, but it is necessary to accept proper principles which are diverse for diverse genera. |
lib. 1 l. 43 n. 12 Consequenter cum dicit: si vero neque ex omnibus etc., excluso stulto intellectu positionis contra quam disputatur, concludit propositum; et dicit quod, si non dicatur quod quodlibet demonstretur ex quolibet, sicut opus est dicere propter praemissa, sequitur quod nec sic ex principio, ex quo concluditur haec conclusio, concludatur altera; alioquin ex quolibet demonstraretur quodlibet. Unde necesse est quod diversarum scientiarum sint diversa principia, si oportet quod omnium scientiarum principia sint unius generis his, quae ex eis demonstrantur; sed oportebit quod ex istis principiis demonstrentur hae conclusiones, et ex illis illae, ex diversis scilicet principiis demonstratione facta in diversis scientiis, quae sunt de diversis generibus. | Then (88b22), having excluded the injudicious interpretation of the position against which he is disputing, he concludes to his point. And he says that if it is not admitted that anything is demonstrated from just anything—as we must, in view of the foregoing—it follows, that one conclusion is not derived from some principle in such a way that a different conclusion can be derived from it; otherwise just anything is demonstrated from just anything. Hence it is necessary that the principles of diverse sciences be diverse. If it is required that the principles of each science be of the same genus as everything demonstrated from them, it will be required that from these principles be demonstrated these conclusions, and “those from those,” i.e., from diverse principles, demonstration being made in diverse sciences which treat of diverse genera. |
lib. 1 l. 43 n. 13 Tertiam rationem ponit ibi: manifestum autem hoc est etc., et dicit quod manifestum est etiam alio modo quod non contingit hoc, scilicet quod eadem sint principia omnium scientiarum; quia ostensum est supra quod diversorum generum sunt principia diversa genere. Unde cum diversae scientiae sint de diversis generibus, sequitur quod diversa principia sint diversarum scientiarum. | Then (88b25) he presents the third reason which states that it is clear from another angle that this does not occur, namely, that the principles of all the sciences are the same; because it has been shown above that the principles of diverse genera are themselves generically diverse. Hence since diverse sciences are concerned with diverse genera, it follows that the principles of diverse sciences are diverse. |
Sed quia quodammodo eadem principia communia sunt quibus omnes scientiae utuntur, ideo consequenter distinguit de principiis, et dicit quod duplicia sunt principia. Quaedam ex quibus primo demonstratur, sicut primae dignitates, ut quod non contingit idem esse et non esse. Et iterum sunt quaedam principia circa quae sunt scientiae, scilicet subiecta scientiarum; quia definitionibus subiecti utimur ut principiis in demonstrationibus. Illa ergo prima ex quibus demonstratur, sunt communia omnibus scientiis: sed principia circa quae sunt scientiae, sunt propria cuilibet scientiae, sicut numerus arithmeticae, et magnitudo geometriae. Principia autem communia oportet ad haec propria applicari ad hoc quod demonstretur. Et quia non ex solis communibus principiis demonstratur, non potest dici eadem esse principia omnium syllogismorum demonstrativorum, quod intendit probare. | But because the common principles which all sciences use are in some way the same, he distinguishes among the principles and says that principles are twofold: some of the first principles from which one demonstrates are as the first dignities; for example, “Being and non-being are not the same.” Again, there are other principles, namely, those with which the sciences are concerned, namely, the subjects of the sciences, because we use the definitions of the subjects as principles in demonstrations. Therefore, the members of the first group of principles from which we demonstrate are common to all the sciences; but the principles with which the sciences are concerned are proper to each science, as number to arithmetic, and magnitude to geometry. But the common principles must be applied to these proper principles, if there is to be demonstration. And because one does not demonstrate only from common principles, it cannot be said that the principles of all demonstrative syllogisms are the same, which is what he intended to prove. |