Authors/Ockham/Summa Logicae/Book III-3/Chapter 36
From The Logic Museum
< Authors | Ockham | Summa Logicae | Book III-3
Jump to navigationJump to search
Latin | English |
---|---|
CAP. 36. DE INDUCTIONE ILLARUM DE CONTINGENTI. | Chapter 36. On the induction of those Contingents |
Circa illas de contingenti est sciendum quod singulares de contingenti non inferunt universalem de contingenti, quia ista regula non valet `singulares sunt contingentes, igitur universalis est contingens'; quaelibet enim singularis istius universalis est contingens `omne verum contingens est verum', et tamen universalis est necessaria. Similiter ista est impossibilis `nullum verum contingens est verum', et tamen quaelibet singularis est contingens; et ita talis inductio non valet `hanc propositionem veram contingentem esse veram est contingens, et illam, et sic de singulis, igitur omnem propositionem veram contingentem esse veram est contingens'. | With regard to those contingents, it must be known that the particulars of the contingent do not imply the universal of the contingent, because this rule does not apply: `the particulars are contingent, therefore the universal is contingent'; for every particular of this universal is contingent; 'every contingent truth is truth', and yet the universal is necessary. Similarly, this is impossible: `no contingent truth is truth,' and yet every singular thing is contingent; and thus such an induction does not hold: `this proposition is contingently true to be contingently true, and that, and so on of individuals, therefore every proposition contingently true is contingently true'. |
Similiter non sequitur e converso, quia haec regula falsa est `universalis est contingens, igitur quaelibet singularis', sicut prius dictum est. Per ista patet quod ambae istarum regularum sunt falsae `omnes singulares sunt impossibiles, igitur universalis est impossibilis'; `universalis est impossibilis, igitur omnes singulares sunt impossibiles', sicut patet per praedicta. | Similarly, it does not follow the other way around, because this rule is false: `universal is contingent, therefore every singular', as was said before. From these it is clear that both of these rules are false: 'all particulars are impossible, therefore the universal is impossible'; `the universal is impossible, therefore all particulars are impossible', as is clear from what has been said. |
Et eodem modo raro aliae propositiones modales sumptae in sensu compositionis inferunt suas singulares sumptas in eodem sensu; sicut non sequitur `omnem hominem esse risibilem est primo verum, igitur hunc hominem esse risibilem est primo verum'. | And in the same way, other modal propositions taken in the sense of composition rarely infer their singulars taken in the same sense; just as it does not follow that it is first true that every man is laughable, therefore it is first true that this man is laughable. |
Et tamen frequenter ƿ est bona inductio ex singularibus ad universalem; unde bene sequitur `hunc hominem esse animal est per se verum, et illum hominem, et sic de singulis, igitur omnem hominem esse animal est per se verum'. | And yet there is frequently a good induction from particulars to the universal; from which it well follows that 'that this man is an animal is intrinsically true, and that man, and so on of individuals, therefore that every man is an animal is intrinsically true'. |
Et ita est de multis aliis. Quando autem hoc sit et quando non, potest faciliter sciri per ea quae dicta sunt et sciendo quid requiritur ad hoc quod talis propositio modalis sit vera, et ideo ad praesens ista de inductione sufficiant. | And so it is with many others. But when this is the case and when it is not, it can easily be known by what has been said and by knowing what is required for such a modal proposition to be true, and therefore for the present these things about induction are sufficient. |