Authors/Ockham/Summa Logicae/Book III-3/Chapter 46

From The Logic Museum
Jump to navigationJump to search


Latin English
CAP. 46. DE INSOLUBILIBUS. Chapter 46. On insolubles.
Circa insolubilia sciendum est quod non ideo dicuntur a sophistis aliqua insolubilia quia nullo modo possunt solvi, sed quia cum difficultate solvuntur. With regard to insolubles, it must be known that certain things are not said by the sophists to be insoluble because they cannot be solved in any way, but because they are solved with difficulty.
Unde sciendum quod insolubilia sophismata sunt quando per consequentias apparentes, quae videntur regulari per regulas necessarias, ex propositione aliqua contingenti infertur sua opposita; quae ideo dicuntur insolubilia, quia difficile est tales consequentias impediri. Hence it must be known that sophistry is insoluble, when its opposites are inferred from some contingent proposition, appearing by consequences, which seem to be regulated by necessary rules; which are therefore called insoluble, because it is difficult to prevent such consequences.
Et talia argumenta non possunt fieri nisi quando actus humanus respicit istum terminum `falsum', vel aliquem consimilem, affirmative; vel hunc terminum `verum', vel aliquem consimilem, negative; sicut est de ista `Sortes dicit falsum' et de ista `Sortes non dicit verum'. And such arguments can only be made when a human act regards this term 'false', or something similar, positively; or this term 'true', or something similar, negatively; just as it is about that `Socrates speaks a falsehood' and about that `Socrates does not speak truth'.
Et fit hoc modo insolubile. Incipiat Sortes sic loqui `Sortes dicit falsum', ita quod nihil aliud loquatur; et tunc quaero: aut Sortes dicit verum, aut Sortes dicit falsum. And it becomes insoluble in this way. Let Socrates begin to speak thus: `Socrates lies', so that nothing else is spoken; and then I ask: either Socrates says the truth, or Socrates lies.
Si dicas quod Sortes dicit verum, et non dicit nisi istam propositionem `Sortes dicit falsum', igitur haec est vera `Sortes dicit falsum'; et per consequens Sortes dicit falsum; et ita si dicit verum, dicit falsum. If you say that Socrates tells the truth, and does not say anything other than the proposition `Socrates lies', then this is true: `Socrates lies'; and consequently Lottes lies; and so if he speaks the truth, he speaks falsely.
Si dicas quod Sortes ƿ dicit falsum, igitur haec est vera `Sortes dicit falsum'; et Sortes dicit hoc, igitur Sortes dicit hoc quod est verum; et per consequens Sortes dicit verum; et ita si Sortes dicit falsum, dicit verum, isto casu posito. Istud argumentum dicitur insolubile, quia de difficili solvitur. If you say that Socrates says falsely, then this is true `Socrates lies'; And Socrates says this, therefore Socrates says that which is true; and consequently Socrates tells the truth; and so, if Socrates lies, he tells the truth, given this case. This argument is called insoluble, because it is resolved by a difficulty.
Et ad solutionem istius et aliorum omnium est sciendum quod talis propositio contingens, ex qua debet inferri sua repugnans, vel habet hunc terminum `falsum' vel aliquem consimilem, vel hunc terminum `verum' vel aliquem consimilem. And for the solution of this and all the others, it is necessary to know that such a contingent proposition, from which it must be inferred that it contradicts itself, either has the term `false' or something similar, or the term `true' or something similar.
Si primo modo, oportet quod sit affirmativa, et debet dici quod sit falsa; unde si Sortes incipiat sic loqui `Sortes dicit falsum', dicendum est quod ista propositio est falsa. Si autem inciperet sic loqui `Sortes non dicit falsum', non posset fieri tale argumentum apparens. If in the first mode, it must be affirmative, and it must be said that it is false; therefore if Socrates begins to speak thus, `Socrates lies,' it must be said that this statement is false. But if he began to speak thus, `Socrates does not lie,' it would not be possible to make such an apparent argument.
Si autem propositio contineat hunc terminum `verum' vel aliquem consimilem, oportet quod sit negativa, et tunc est concedendum quod illa propositio est vera. Sicut si Sortes incipiat sic loqui `Sortes non dicit verum', concedendum est quod haec est vera. But if a proposition contains the term 'true' or something similar, it must be negative, and then it must be admitted that that proposition is true. Just as if Socrates begins to speak like this, `Socrates does not tell the truth', we must admit that this is true.
Et si arguitur: si haec sit vera `Sortes non dicit verum', et Sortes dicit hanc propositionem, igitur Sortes dicit propositionem veram, dicendum est quod ista consequentia non valet `Sortes dicit hanc propositionem, et haec propositio est vera, igitur Sortes dicit propositionem veram'. Et ratio huius negationis est, quia in ista propositione `Sortes non dicit verum' praedicatum non potest supponere pro ista tota propositione cuius est pars, quamvis non propter hoc praecise quod est pars eius. And if it is argued that if this is true, `Socrates does not say the truth,' and Socrates says this proposition, therefore Socrates says a true proposition, it must be said that this conclusion does not hold: `Socrates says this proposition, and this proposition is true, therefore Socrates says a true proposition. And the reason for this denial is that in that proposition, `Socrates does not say the truth,' the predicate cannot stand for that entire proposition of which it is a part, although not precisely because it is a part of it.
Et ideo ista propositio `Sortes non dicit verum' aequivalet isti `Sortes non dicit aliud verum ab isto: Sortes non dicit verum'. And therefore this proposition `Socrates does not say the truth' is equivalent to these `Socrates does not say any other truth than this: Socrates does not say the truth'.
Et ideo sicut non sequitur `haec est vera, et Sortes dicit istam, igitur dicit aliam propositionem veram ab ista', ita non sequitur `Sortes dicit istam propositionem: Sortes non dicit verum; et haec est vera; igitur Sortes dicit verum', et hoc, quia sicut dictum est, istae duae aequivalent ƿ `Sortes non dicit verum' et `Sortes non dicit aliud verum ab isto: Sortes non dicit verum'. And therefore, just as it does not follow that `this is true, and Socrates says this,' therefore he says another true proposition from that one, so it does not follow that `Socrates says this proposition: Socrates does not say the truth; and this is true; Therefore Socrates says the truth, and this, because, as has been said, these two are equivalent `Socrates does not say the truth' and 'Socrates does not say any other truth than this: Socrates does not say the truth'.
Eodem modo, proportionaliter, respondendum est ad argumentum praecedens. Quia quando Sortes incipit sic loqui `Sortes dicit falsum', et quaeritur `aut Sortes dicit verum aut falsum', dicendum est quod Sortes neque dicit verum neque falsum; sicut concedendum est quod neque dicit verum neque dicit falsum aliud ab isto. Et tunc non sequitur `haec est vera: Sortes dicit falsum; et Sortes dicit hanc; igitur Sortes dicit falsum', sicut non sequitur `Sortes dicit hoc, et hoc est falsum, igitur Sortes dicit aliud falsum ab isto'. Et hoc, quia istae duae aequivalent `Sortes dicit falsum' et `Sortes dicit aliud falsum ab isto', propter hoc quod in ista `Sortes dicit falsum' praedicatum non potest supponere pro ista propositione. In the same way, proportionally, we must respond to the preceding argument. Because when Socrates begins to speak like this, `Socrates lies,' and it is asked, `whether Socrates says truth or falsity,' it must be said that Socrates says neither truth nor falsity; just as it must be admitted that he neither says the truth nor says a falsity other than this. And then it does not follow, `This is the truth:' Lottes lies; And Socrates says this; therefore Socrates lies, as it does not follow that Socrates says this and this is false, therefore Socrates says another falsity from this one. And this, because these two are equivalent, `Socrates lies' and 'Socrates says another falsity from this', for the reason that the predicate in these `Socrates lies' cannot be supposited for that proposition.
Et si dicatur: hic arguitur ab inferiori ad superius sine negatione et sine distributione, igitur est consequentia bona, dicendum est quod consequentia non valet, nisi quando illud superius in illo consequente potest supponere pro illo inferiori. And if it be said: here it is argued from the lower to the higher without negation and without distribution, therefore the inference is good, it must be said that the inference is not valid except when the higher can be supposited in that consequent for the lower.
Unde si in ista `homo est animal' li animal non posset supponere pro homine, haec consequentia non valeret `Sortes est homo, igitur Sortes est animal'. In ista autem `Sortes dicit falsum' praedicatum non potest supponere pro tota ista propositione, ideo non sequitur `Sortes dicit hoc falsum, ergo Sortes dicit falsum'. Hence, if in these `man is an animal' the animal could not stand for man, this conclusion would not be valid: `Socrates is a man, therefore Socrates is an animal.' But in this case, `Socrates lies' cannot stand for the entire proposition, so it does not follow that `Socrates says this is false, therefore Socrates lies'.
Per praedicta potest studiosus respondere ad omnia insolubilia, si solvendo ea velit naturam insolubilium diligenter advertere et inquirere. Quod relinquo ingeniosis, quia ista de obligationibus et insolubilibus non inserui nisi propter istius Summulae complementum et ne tanta pars logicae totaliter dimitteretur intacta. By means of the aforesaid, the student can answer all the insolubles, if, by solving them, he wishes to carefully observe and investigate the nature of the insolubles. This I leave to their ingenuity, because I did not insert these things about obligations and insolubles except for the sake of the completion of this Summa, and so that such a large part of the logic should not be left completely untouched.

Notes