Authors/Ockham/Summa Logicae/Book III-1/Chapter 60
From The Logic Museum
< Authors | Ockham | Summa Logicae | Book III-1
Jump to navigationJump to search
Latin | English |
---|---|
Cap. 60. De mixtione propositionum de possibili et aliarum in tertia figura | Chapter 60. On the mixture of de possibili propositions and of others in the third figure. |
Quando autem praemissae tales disponuntur in tertia figura, si utraque sumatur in sensu compositionis, si illa de modo alio non inferat illam de necessario, non valet mixtio. Sicut non sequitur ‘omnem hominem esse Deum est scitum a te; omnem hominem esse humanitatem est possibile; igitur aliquam humanitatem esse Deum est possibile'. Sed si illa de modo inferat illam de necessario, est bona mixtio, tenens virtute istius regulae 'si praemissae sunt possibiles et compossibiles, conclusio est possibilis’ et virtute istius omne necessarium est compossibile possibili'. | But when such premises are arranged in the third figure, if both are taken in the sense of composition, if the latter does not infer the former from another mode of necessity, the mixture is not valid. Just as it does not follow that ‘every man is known by you to be God; it is possible for every man to be human; therefore it is possible for some human to be God’. But if the former infers the latter of necessity, it is a good mixture, holding by virtue of the rule ‘if the premises are possible and composable, the conclusion is possible’ and by virtue of the latter every necessary is composable with the possible’. |
Si autem illa de possibili sumatur in sensu compositionis et alia in sensu divisionis, si illa de possibili non fuerit maior, non sequitur conclusio de possibili si illa de alio modo non inferat illam de necessario. Sicut non sequitur ‘omnem hominem esse Deum est possibile; omnis homo scitur esse humanitas; igitur aliquam humanitatem esse Deum est ƿ possibile’. Similiter non. valet si minor fuerit de possibili. Per eosdem terminos patet. | But if the one of possibility is taken in the sense of composition and the other in the sense of division, if the one of possibility is not major, the conclusion of possibility does not follow if the one of another mode does not infer it of necessity. Just as it does not follow that ‘it is possible for every man to be God; every man is known to be humanity; therefore it is possible for some humanity to be God’. Similarly, it does not hold if the minor is of possibility. It is clear by the same terms. |
Si autem illa de possibili sumatur in sensu divisionis et ila de modo alio in sensu compositionis, si illa de possibili fuerit maior, sequitur conclusio de possibili si minor inferat suam de inesse. Et hoc est verum quando maior est universalis. E converso est quando maior est particularis. Cuius ratio est, quia illa de modo, sicut dictum est, infert suam de inesse; sed ex tali de possibili et illa de inesse est talis mixtio conveniens, sicut dictum est prius[1]. | But if that of possibility is taken in the sense of division and that of another mode in the sense of composition, if that de possibility is major, the conclusion de possibility follows if the minor infers its inherence. And this is true when the major is universal. The converse is true when the major is particular. The reason for this is that the modal proposition, as has been said, infers its inherence; but from such a proposition of possibility and that of inherence there is such a suitable mixture, as has been said before.[2]. |
Si autem illa de possibili fuerit minor, valet nuxtio; sicut sequitur omnem hominem esse Deum est scitum a te; omnis homo potest esse humanitas; igitur aliqua humanitas potest esse Deus', sumpto subiecto conclusionis pro eo quod potest esse. | But if the proposition of possibility is minor, the conclusion is valid; as it follows: it is known to you that every man is God; every man can be human; therefore some human can be God,' taking the subject of the conclusion for that which can be. |
Si autem utraque sumatur in sensu divisionis, valet mixtio respectu conclusionis de possibili quando illa de modo infert suam de inesse. | But if both are taken in the sense of division, the mixture is valid with respect to the conclusion of possibility when it infers its inherence from the mode. |